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Abstract. In this paper, we develop an effective conservative high order finite differ-
ence scheme with a Fourier spectral method for solving the inviscid surface quasi-
geostrophic equations, which include a spectral fractional Laplacian determining the
vorticity for the transport velocity of the potential temperature. The fractional Lapla-
cian is approximated by a Fourier-Galerkin spectral method, while the time evolution
of the potential temperature is discretized by a high order conservative finite differ-
ence scheme. Weighted essentially non-oscillatory (WENO) reconstructions are also
considered for comparison. Due to a low regularity of problems involving such a
fractional Laplacian, especially in the critical or supercritical regime, directly applying
the Fourier spectral method leads to a very oscillatory transport velocity associated
with the gradient of the vorticity, e.g. around smooth extrema. Instead of using an
artificial filter, we propose to reconstruct the velocity from the vorticity with central
difference discretizations. Numerical results are performed to demonstrate the good
performance of our proposed approach.
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1 Introduction

In this work, we are interested in the surface quasi-geostrophic (SQG) equations for
strong rotating fluids [31, 34, 43]

∗Corresponding author. Email addresses: nzhang@stu.xmu.edu.cn (N. Zhang), zpmao@xmu.edu.cn (Z. Mao),
txiong@xmu.edu.cn (T. Xiong)

http://www.global-sci.com/cicp 1474 ©2022 Global-Science Press



N. Zhang, Z. Mao and T. Xiong / Commun. Comput. Phys., 32 (2022), pp. 1474-1509 1475

∂2ψ

∂x2 +
∂2ψ

∂y2 +
∂2ψ

∂z2 =0, (1.1a)

θ=
∂ψ

∂z

∣∣∣∣
z=0

, lim
z→+∞

∂ψ

∂z
=0, (1.1b)

u=∇⊥ψ=

(
− ∂ψ

∂y

∣∣∣∣
z=0

,
∂ψ

∂x

∣∣∣∣
z=0

)
, (1.1c)

∂θ

∂t
+∇·(θu)+κ(−∆)s θ=0. (1.1d)

Here ψ(x,y,z) is the potential vorticity, which is uniform due to a zero right side of (1.1a).
θ(x,y) = ∂ψ

∂z |z=0 is the potential temperature (or the buoyancy) restricted on the surface
S := {(x,y,z)∈R3 : z=0}. u(x,y) is the transport velocity determined by the gradient of
the vorticity on the surface S , which is the geostrophic balance of rotation and pressure
gradients. κ(−∆)sθ accounts for the Ekman pumping effect with a general fractional
Laplacian power s and, κ is the Ekman pumping coefficient.

The SQG equations (1.1) can be derived from a three-dimensional (3D) quasi-
geostrophic model which describes large-scale mid-latitude atmospheric or oceano-
graphic motions [16, 36, 43]. It is a reduced quasi-geostrophic system for the motion
of a stratified fluid in rotation, under a small Rossby number (rotation of the Earth is
much larger than the rotation of the motion) and a small Froude number (high stratifica-
tion) [17, 20, 21, 31, 34, 43, 61]. Inviscid SQG equations with κ=0 in (1.1d) can be used to
simulate atmospheric phenomena, such as frontogeneses, which are strong fronts formed
between hot and cold air [20, 43].

We can further reduce the SQG system (1.1) into a two-dimensional (2D) problem by
assuming the solution is periodic along the horizontal direction of (x,y). By taking the
Fourier transform with respect to (x,y) for (1.1a), first, we obtain

d2ψ̂

dz2 (k,z)=K2 ψ̂(k,z), (1.2)

where ψ̂(k,z) is the Fourier transform of ψ with respect to (x,y), k is the horizontal
wavenumber and K= |k|. Again, by applying the Fourier transform with respect to (x,y)
for the two conditions in (1.1b), solving the ordinary differential equation (1.2) with re-
spect to z we get

ψ̂(k,z)=− θ̂(k)
K

exp(−Kz), (1.3)

where θ̂(k) is the Fourier transform of the potential temperature θ. Let z=0, by taking the
inverse Fourier transform for (1.3), we obtain the following fractional Laplacian equation

(−∆)1/2ψ(x,t)=−θ(x,t). (1.4)


