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Abstract. We propose a method combining boundary integral equations and neural
networks (BINet) to solve (parametric) partial differential equations (PDEs) and ope-
rator problems in both bounded and unbounded domains. For PDEs with explicit
fundamental solutions, BINet learns to solve, as a proxy, associated boundary inte-
gral equations using neural networks. The benefits are three-fold. Firstly, only the
boundary conditions need to be fitted since the PDE can be automatically satisfied
with single or double layer potential according to the potential theory. Secondly, the
dimension of the boundary integral equations is less by one, and as such, the sample
complexity can be reduced significantly. Lastly, in the proposed method, all differ-
ential operators have been removed, hence the numerical efficiency and stability are
improved. Adopting neural tangent kernel (NTK) techniques, we provide proof of
the convergence of BINets in the limit that the width of the neural network goes to
infinity. Extensive numerical experiments show that, without calculating high-order
derivatives, BINet is much easier to train and usually gives more accurate solutions,
especially in the cases that the boundary conditions are not smooth enough. Further,
BINet outperforms strong baselines for both one single PDE and parameterized PDEs
in the bounded and unbounded domains.
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1 Introduction

Partial differential equations (PDEs) have been widely used in scientific fields and engi-
neering applications, such as Maxwell’s equations in optics and electromagnetism [16],
Navier-Stokes equations in fluid dynamics [39], Schrödinger equations in quantum phy-
sics [36], and Black-Scholes equations for call option pricing in finance [30]. Therefore,
finding solutions to PDEs has been a critical topic in many research fields. However,
in most cases, the analytical solution of PDEs is infeasible to obtain, such that numeri-
cal methods become the major bridge between PDE models and practical applications.
Furthermore, many problems require to solve PDEs with high dimensional parameters,
which leads to unaffordable computational cost if the parameter space is discretized di-
rectly.

In the past decade, deep learning has achieved great success in computer vision, natu-
ral language processing, and many other topics [15]. Together with the deep learning
revolution, solving PDEs with deep neural networks (DNNs) also enter a period of pros-
perity. Due to the attractive capability in approximating functions, especially in high
dimensional space, DNNs hold great potential in solving PDEs with the promise of pro-
viding a good ansatz to represent the solution. In the literature, many efforts have been
devoted to developing DNN-based methods for solving various kinds of PDEs, such as
DGM [37], PINN and its variants [31, 34, 35], Deep Ritz [42], and so on. The main idea of
these methods is to use neural networks to approximate the solution of the PDE directly,
and the two key ingredients that characterize these neural network-based PDE solvers
are loss function and network structure.

Regarding the loss function, one natural choice is the residual of PDE. In [35, 37], the
L2 norm of the residual is used as the loss function. For elliptic equations, the variation
form provides another choice of the loss function. Yu and E proposed to use Ritz varia-
tional form as the loss function in [42] and Galerkin variational form was formulated as
an adversarial problem in [45]. In [9,29], to avoid high order derivatives in the loss func-
tion, high order PDEs are firstly transformed to first-order PDEs system by introducing
auxiliary variables, and thus only first-order derivatives need to be computed in the loss
function. To solve PDEs, boundary condition has to be imposed properly. One simple
way to enforce the boundary condition is to add it to the loss function as a penalty term.
In this approach, we must tune a weight to balance the PDEs’ residual and boundary
conditions. Usually, this weight is crucial and subtle to get good results. The other way
is to impose the boundary condition explicitly by introducing a distance function of the
boundary [6].

As for network structure, there are also many works recently. A fully connected neu-
ral network (FCN) is one of the most frequently used networks. In [42], it is found that
residual neural network (ResNet) gives better results. For PDEs with multiscale struc-
tures, a multiscale neural network was designed specifically by introducing multiscale
structure in the network [8]. The activation function is another important component of
neural networks. Choice of the activation function is closely related to the smoothness


