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Abstract. We present quantum numerical methods for the typical initial boundary
value problems (IBVPs) of convection-diffusion equations in fluid dynamics. The IBVP
is discretized into a series of linear systems via finite difference methods and explicit
time marching schemes. To solve these discrete systems in quantum computers, we
design a series of quantum circuits, including four stages of encoding, amplification,
adding source terms, and incorporating boundary conditions. In the encoding stage,
the initial condition is encoded in the amplitudes of quantum registers as a state vector
to take advantage of quantum algorithms in space complexity. In the following three
stages, the discrete differential operators in classical computing are converted into uni-
tary evolutions to satisfy the postulate in quantum systems. The related arithmetic
calculations in quantum amplitudes are also realized to sum up the increments from
these stages. The proposed quantum algorithm is implemented within the open-source
quantum computing framework Qiskit [2]. By simulating one-dimensional transient
problems, including the Helmholtz equation, the Burgers’ equation, and Navier-Stokes
equations, we demonstrate the capability of quantum computers in fluid dynamics.
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1 Introduction

Fluid mechanics is one of the earliest disciplines that widely bring in numerical simu-
lations. Von Neumann and Charney [24] were beginning to use the first programmable
digital computer ENIAC for meteorology as early as the 1940s. Nevertheless, the scales
of simulation in computational fluid dynamics (CFD) without any modeling are still far
away from industrial-strength problems, since the computational cost exponentially de-
pendents on the Reynolds number (Re) [48]. Slotnick et al. [41] suggested that a poten-
tial paradigm shift driven by cutting-edge computing technologies, including quantum
computing, may fundamentally change the situation. Motivated by the reaching point of
quantum supremacy [37] in experimental quantum computing [3], we observe a flourish-
ing development of quantum numerical methods or quantum simulations in researches
and engineering practices with various physical contexts, including fluid dynamics. In
the present work, our focus is the realization of the numerical methods for partial differ-
ential equations (PDEs) governing the fluid dynamics system.

The following introduction of the previous efforts on quantum solvers of PDEs in-
evitably involves some discussions on the categories of quantum computing hardware
since some of the quantum numerical procedures are better considered as different ar-
chitectures rather than algorithms, as suggested by Kendon et al. [25]. One category of
quantum computing hardware is the so-called quantum analog computing [25] or ana-
log quantum simulator [19], which uses a controllable quantum system to investigate an-
other much more complex system. Although it is relatively feasible for implementation,
the universality of quantum simulators relies on finding a corresponding Hamiltonian,
which is nontrivial for fluid dynamics or other classical systems. Specific analog quantum
hardware based on quantum annealing (QA) [23] is most likely to become commercially
available [33] amongst many prototypes of quantum computing systems. QA algorithm
utilizes the quantum-mechanical fluctuation to tunnel through the cost barrier between
local minima, and thus it is suitable for optimization problems. Ray et al. [39] converted
a one-dimensional (1D) laminar channel flow problem into a quadratic unconstrained
binary optimization problem via the least square method. Srivastava and Sundararagha-
van [42] constructed a graph representation of the functional of a 1D elastic bar via Ising
Hamiltonian on a D-Wave machine. Both attempts [39, 42] directly adopted steady-state
elliptical differential equations to an discretely equivalent form that is admitted to D-
Wave hardware [8]. However, the PDEs in fluid dynamics are most often non-elliptic, as
our discussion later on in Section 2.1. Therefore, the QA machines are very likely to be
merely used for certain sub-process rather than for the entire solution process. Zanger et
al. [50] proposed a QA-based integrator for ordinary differential equations (ODE), where
a heuristic minor-embedding algorithm proposed by Cai et al. [9] is employed to make
the connection locally condensed. Knudsen and Mendl [26] constructed a variational
continuous-variable quantum algorithm [5] to integrate an ODE. An adiabatic quantum
algorithm for solving a Hermitian linear system is proposed by Subasi et al. [45], and this
algorithm is experimentally implemented and tested by Wen et al. [46].


