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THE DISCRETE RAVIART-THOMAS MIXED FINITE ELEMENT

METHOD FOR THE p-LAPLACE EQUATION

M.M. GUO AND D.J. LIU∗

Abstract. We consider the discrete Raviart-Thomas mixed finite element method (dRT-MFEM)
for the p-Laplace equation in the new sense of measurement. The new measurement of p-Laplace

equation for 2 ≤ p < ∞ was studied by D. J. Liu (APPL. NUMER. MATH., 152: 323-337,
2020), where the reliable error analysis for conforming and nonconforming FEM were obtained.
This paper provide the reliable and efficient error analysis of dRT-MFEM for p-Laplace equation
(1 < p < 2). The numerical investigation for benchmark problem demonstrates the accuracy and

robustness of the proposed dRT-MFEM.
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1. Introduction

We discuss the following nonlinear p-Laplace equation (1 < p < 2) in the bound-
ed Lipschitz domain Ω ⊂ R2 with the given f ∈ Lq(Ω) (q conjugate of p),

(1)

{
−div(|∇u|p−2∇u) = f in Ω

u = 0 on ∂Ω.

The p-Laplace equation (1) admits a unique weak solution [4] satisfying

(2) u = arg minE(v) for v ∈ W 1,p
0 (Ω) := {v ∈ W 1,p(Ω) : v|∂Ω = 0}.

where

(3) E(v) :=

ˆ
Ω

W (∇v)dx− F̃ (v).

The energy density function W : R2 → R reads W (a) := |a|p/p with the derivative
σ(a) := DW (a) = |a|p−2a for all a ∈ R2 \ {0} which is recorded as σ for the

convenience of subsequent discussion and F̃ (v) :=
´
Ω
fv dx and the dual function

W ∗(a) :=
|a|q

q

(
1

p
+

1

q
= 1

)
.

The Euler-Lagrange equation of (2) consists in finding u ∈ W 1,p
0 (Ω) with

(4)

ˆ
Ω

σ · ∇vdx− F̃ (v) = 0 for all v ∈ W 1,p
0 (Ω).

The finite element analysis for (1) has been well done. We can find some previous
work in sense of traditional W 1,p(Ω)-norm in [12, 15, 23, 13]. Sharper error esti-
mates were derived in [18, 14, 3] by developing the so called quasi-norm techniques,
and these techniques were extended to establish improved a posteriori error estima-
tors of residual type for the adaptive finite element methods [11, 19]. Liu [17, 16]
generalized the quasi-norm techniques to a new measure framework for 2 ≤ p < ∞,
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and obtained the reliable error analysis for conforming FEM, nonconforming FEM,
and dRT-MFEM. Nevertheless, the research for 1 < p < 2, which including a sin-
gular operator, was not covered in the above references. In this paper, we mainly
focus on the dRT-MFEM of p-Laplace equation for 1 < p < 2.

Marini representation [2, 21] was proposed for the purpose of the cost-free ap-
proximation of Raviart-Thomas MFEM for linear problem. Arbogast [1] improved
the method for general variable coefficients elliptic PDEs. A one-point quadrature
rule in the dual Raviart-Thomas MFEM leads to the dRT-MFEM in [10], which
developed the Marini representation for nonlinear optimal design problem, the first
guaranteed energy bound and an optimal a posteriori error estimate were obtained.
Liu [17] generalized the dRT-MFEM for p-Laplace equation (2 ≤ p < ∞), and pro-
vided the reliable error analysis. This paper will study the dRT-MFEM of p-Laplace
problem for 1 < p < 2, and show the error estimators without a gap between the
upper bound and the lower bound.

The remaining parts of this paper are organized as follows. Section 2 introduces
the newly defined measure to quantify the quality of approximations, and proves
the convex control of energy density function W . Section 3 states the dRT-MFEM
for the p-Laplace problem. A priori and a posteriori error estimators based on
the newly defined measure are presented in Section 4. Some numerical experiments
conclude the paper in Section 5 with empirical evidence of the expected convergence.

Standard notation applies throughout this paper to Lebesgue and Sobolev spaces
Lq(Ω), Hs(Ω), and H(div,Ω), as well as to the associated norms ∥·∥q,Ω := ∥·∥Lq(Ω),
|||·|||q,Ω := ∥∇ · ∥Lq(Ω), and |||·|||

NC,q,Ω
:= ∥∇

NC
· ∥Lq(Ω) with the piecewise gradient

∇NC · |T := ∇(·|T ) for all T in a regular triangulation T of the polygonal domain
Ω. Here and throughout,the expression ”.” abbreviates an inequality up to some
multiplicative generic constant, i.e., A . B means A ≤ C B with some generic
constant 0 ≤ C < ∞, which depends on the interior angles of the triangles but not
their sizes.

2. The convexity control of W

We firstly recall the concept of distance. Define

F (a) := |a|p/2−1a ∀a ∈ L2(Ω;R2).

Let α := DW (a), β := DW (b) for a, b ∈ L2(Ω;R2), the distance of F (a) and F (b)
can be defined as follows [16]

(5) ∥F (a)− F (b)∥22,q,Ω :=

ˆ
Ω

|α− β|2

(|α|+ |β|)2−q
dx ∀a, b ∈ R2.

The remaining parts of this section are devoted to the convexity control of energy
density function W , which is formulated in the following lemma 2.2.

Lemma 2.1. Given 1 < p < 2 and the conjugate q, there exist positive constants
s1(p), s2(p), m1(p), m2(p), l1(p), l2(p) such that for any a, b ∈ L2(Ω;R2), α :=
DW (a), β := DW (b) satisfy

(6)
s1(p) (DW (b)−DW (a)) · (b− a) ≤ |DW (b)−DW (a)|2 (|α|+ |β|)q−2

≤ s2(p) (DW (b)−DW (a)) · (b− a) .

(7)
m1(p) (|b|+ |a|)p−2 |b− a|2 ≤ (DW (b)−DW (a)) · (b− a)

≤ m2(p) (|b|+ |a|)p−2 |b− a|2.


