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Abstract. We study the (2+1)-dimensional continuum model for the evolution of step-
ped epitaxial surface under long-range elastic interaction proposed by Xu and Xiang
(SIAM J. Appl. Math. 69 (2009), 1393–1414). The long-range interaction term and the
two length scales in this model makes PDE analysis challenging. Moreover, unlike
in the (1+1)-dimensional case, there is a nonconvexity contribution in the total energy
in the (2+1)-dimensional case, and it is not easy to prove that the solution is always
in the well-posed regime during the evolution. In this paper, we propose a modified
(2+1)-dimensional continuum model based on the underlying physics. This modifica-
tion fixes the problem of possible illposedness due to the nonconvexity of the energy
functional. We prove the existence and uniqueness of both the static and dynamic solu-
tions and derive a minimum energy scaling law for them. We show that the minimum
energy surface profile is mainly attained by surfaces with step meandering instabil-
ity. This is essentially different from the energy scaling law for the (1+1)-dimensional
epitaxial surfaces under elastic effects attained by step bunching surface profiles. We
also discuss the transition from the step bunching instability to the step meandering
instability in (2+1)-dimensions.
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1 Introduction

In epitaxial film growth, elasticity-driven surface morphology instabilities have been
widely employed to generate self-assembled nanostructures on the film surfaces, which
exhibit interesting electronic and optical properties and have various applications in
semiconductor industry [26, 28]. In heterogeneous epitaxial film, the film has a differ-
ent lattice constant than that of the substrate, and the misfit strain causes step bunching
and step meandering instabilities on such a surface. It is important to understand these
instability phenomena due to elastic effects for the design and fabrication of advanced
materials based on the self-assembly techniques.

In practice, most semiconductor devices are fabricated on vicinal surfaces when the
temperature for epitaxial growth is below the roughening transition. In this case, these
surfaces consist of a succession of terraces and atomic height steps. Traditional contin-
uum models [2,14,31] that treated the surface as a continuum cannot be applied directly.
Tersoff et al. [34] proposed a discrete model that describes the dynamics of each step. In
their model, the elastic interactions between steps include the force dipole caused by the
steps and the force monopole caused by misfit stress. The force dipole stabilizes a uni-
form step train while the force monopole destabilizes it, leading to the step bunching
instability. Duport et al. [4] also proposed a discrete model to account for these effects. Be-
sides the dipole and monopole interactions, their model includes the elastic interactions
between the adatoms and steps as well as the Schweobel barrier. In (2+1)-dimensions,
the elastic effects also lead to step meandering instability that competes with the bunch-
ing instability for straight steps, and these instabilities and their competitions have been
examined by Tersoff and Pehlke [33], Houchmandzadeh and Misbah [15], and Leonard
and Tersoff [19] using discrete models.

Xiang [35] derived a (1+1)-dimensional continuum model for the stepped surfaces
with elastic effects by taking the continuum limit from the discrete models [4, 34]. In-
stability analysis and numerical simulations based on this continuum model performed
by Xiang and E [36] showed that this continuum model is able to correctly describe the
step bunching instabilities compared with the results of discrete models and experimen-
tal observations. Xu and Xiang [37], Zhu et al. [38] further developed a (2+1)-dimensional
continuum model for the stepped surfaces with elastic effects, which is able to account
for both the step bunching and step meandering instabilities as well as their competi-
tion. Kukta and Bhattacharya [18] proposed a three-dimensional model for step flow
mediated crystal growth under stress and terrace diffusion. There are also continuum
models for the surfaces in homoepitaxy, which contain only the force dipole elastic effect,
e.g., [16, 20, 25, 29].

Luo et al. [22] analyzed the step bunching phenomenon in epitaxial growth with
elasticity based on the Tersoff’s discrete model [34]. In this work, a minimum energy
scaling law for straight steps was derived and the one bunch structure was identified.
They further extended the analyses to one-dimensional discrete system with general
Lennard-Jones type potential [23] as well as one-dimensional continuum model with gen-


