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Abstract. The aim of this paper is to analyze the robust convergence of a class of
parareal algorithms for solving parabolic problems. The coarse propagator is fixed
to the backward Euler method and the fine propagator is a high-order single step inte-
grator. Under some conditions on the fine propagator, we show that there exists some
critical J∗ such that the parareal solver converges linearly with a convergence rate near
0.3, provided that the ratio between the coarse time step and fine time step named J
satisfies J ≥ J∗. The convergence is robust even if the problem data is nonsmooth and
incompatible with boundary conditions. The qualified methods include all absolutely
stable single step methods, whose stability function satisfies |r(−∞)|<1, and hence the
fine propagator could be arbitrarily high-order. Moreover, we examine some popular
high-order single step methods, e.g., two-, three- and four-stage Lobatto IIIC methods,
and verify that the corresponding parareal algorithms converge linearly with a fac-
tor 0.31 and the threshold for these cases is J∗= 2. Intensive numerical examples are
presented to support and complete our theoretical predictions.
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1 Introduction

The main focus of this paper is to study the convergence of a class of parareal solver for
the parabolic problems. Specifically, we let T > 0, u0 ∈ H, and consider the initial value
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problem of seeking u∈C((0,T];D(A))∩C([0,T];H) satisfying

{
u′(t)+Au(t)= f (t), 0< t<T,

u(0)=u0,
(1.1)

where A is a positive definite, selfadjoint, linear operator with a compact inverse, defined
in Hilbert space (H,(·,·)) with domain D(A) dense in H. Here u0 ∈ H is a given initial
condition and f : [0,T]→ H is a given forcing term. Throughout the paper, ‖·‖ denotes
the norm of the space H.

Parallel-in-time (PinT) methods, dating back to the work of Nievergelt in 1964 [25],
have attracted a lot of interest in the last several decades. The parareal method, intro-
duced in 2001 [22], is perhaps one of the most popular PinT algorithms. This method is
relatively simple to implement, and can be employed for any single step integrators. In
recent years, the parareal algorithm and some relevant algorithms, have been applied in
many fields, such as turbulent plasma [27,28], structural (fluid) dynamics [9,13], molecu-
lar dynamics [4], optimal control [23,24], Volterra integral equations and fractional mod-
els [21, 37], etc. We refer the interested reader to survey papers [15, 26] and references
therein.

The parareal algorithm is defined by using two time propagators, G and F , associ-
ated with the large step size ∆T and the small step size ∆t respectively, where we assume
that the ratio J=∆T/∆t is an integer greater than 1. The fine time propagator F is oper-
ated with small step size ∆t in each coarse sub-interval parallelly, after which the coarse
time propagator G is operated with large step size ∆T sequentially for corrections. In
general, the coarse propagator G is assumed to be much cheaper than the fine propa-
gator F . Therefore, throughout this paper, we fix G to the backward-Euler method and
study the choices of F . Then a natural question arises related to convergence of the
parareal algorithm. For parabolic type problems, in the pioneer work [5], Bal proved a
fast convergence of the parareal method with a strongly stable coarse propagator and
the exact fine propagator, provided some regularity assumptions on the problem data.
The analysis works for both linear and nonlinear problems. This convergence behavior
is clearly observed in numerical experiments, see e.g. Fig. 2. However, without those
regularity assumptions, the convergence observed from the empirical experiments will
be much slower than expected, cf. Fig. 3. See also some rigorous analysis in [10, 14, 31].

This interesting phenomenon motivates the current work, where we aim to study the
convergence of parareal algorithm which is expected to be robust in the case of nons-
mooth/incompatible problem data, that is related to various applications, e.g., optimal
control, inverse problems, and stochastic models. There have existed some case stud-
ies. Mathew et al. [24] considered the backward Euler method as the fine propagator
and proved the robust convergence of the parareal algorithm with a convergence factor
0.298 (for all J ≥ 2); see also [16, 32] for some related discussion. Wu [35] showed that
the convergence factors for the second-order diagonal implicit Runge-Kutta method and
a single step TR/BDF2 method (i.e., the ode23tb solver for ODEs in MATLAB) are 0.316


