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Abstract. We discuss structure-preserving numerical discretizations for repulsive and
attractive Euler-Poisson equations that find applications in fluid-plasma and self-
gravitation modeling. The scheme is fully discrete and structure preserving in the
sense that it maintains a discrete energy law, as well as hyperbolic invariant domain
properties, such as positivity of the density and a minimum principle of the specific
entropy. A detailed discussion of algorithmic details is given, as well as proofs of the
claimed properties. We present computational experiments corroborating our analyti-
cal findings and demonstrating the computational capabilities of the scheme.
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1 Introduction

In this manuscript we develop numerical schemes for the repulsive and attractive Euler-
Poisson equations. This is a system of equations that combine the hyperbolic compress-
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ible Euler equations of gas dynamics that describe the time evolution of a fluid state (con-
sisting of pressure, momentum and total energy) with the action of a scalar potential that
in turn depends on the time evolution of the density of the system. The Euler-Poisson
equations have found applications in the context of plasma physics [56], semiconduc-
tor device modeling [51], and vacuum electronics [67]. The equations are often used to
model an electron fluid subject to electrostatic forces. The Euler-Poisson system is also
routinely used in astrophysics [57] for modeling large scale formation of galaxies due to
self-gravitation.

Our goal is to develop a numerical method for the Euler-Poisson system that is sec-
ond order accurate and provably robust. By this we mean that the fully discrete update
procedure at each time-step is locally well-posed, implying: (a) that the numerical scheme
is always able to compute a new admissible state (i. e., with positive density and internal
energy); (b) it preserves a discrete energy law; and (c) that the linear algebra only in-
volves symmetric positive definite problems, while the time-step size is only subject to
a hyperbolic CFL condition. Our approach is based on an operator splitting in order to
decouple the hyperbolic and elliptic subsystems. We consider a fully-discrete analysis of
the scheme, revealing the need of specific choices of space and time discretization that
we make precise in Section 3.

The splitting approach allows us to relegate invariant domain preservation entirely
to the numerical scheme used for the hyperbolic system; see Section 2. This leaves con-
siderable freedom for the specific choice of hyperbolic solver. In particular, one could
choose a numerical method that preserves all invariant sets, or a subset of the invariant
set properties, such as positivity of density and internal energy, see [37,42]. The resulting
scheme will be invariant domain preserving if the hyperbolic solver preserves all invari-
ants. For the sake of completeness we briefly describe the hyperbolic solver used in this
manuscript in Appendix A.

1.1 The Euler-Poisson system

We consider a general model problem derived by coupling the compressible Euler equa-
tions of gas dynamics to a scalar potential:

∂tρ+divm=0, (1.1a)
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−∆φ=α(ρ+ρb). (1.1d)

Here, ρ(x,t)∈R+ is the mass density, m(x,t)∈Rd, the momentum, E(x,t)∈R+ the total
energy, p∈R denotes the thermodynamic pressure, and ρb(x,t)∈R denotes a prescribed
background density that, in contrast to the mass density ρ, might attain negative val-
ues. The balance of momentum and total energy equations (1.1b) and (1.1c) include a
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