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Abstract. We present a framework for solving time-dependent partial differential equa-

tions (PDEs) in the spirit of the random feature method. The numerical solution is

constructed using a space-time partition of unity and random feature functions. Two

different ways of constructing the random feature functions are investigated: feature

functions that treat the spatial and temporal variables (STC) on the same footing, or

functions that are the product of two random feature functions depending on spatial

and temporal variables separately (SoV). Boundary and initial conditions are enforced

by penalty terms. We also study two ways of solving the resulting least-squares problem:

the problem is solved as a whole or solved using the block time-marching strategy. The

former is termed the space-time random feature method (ST-RFM). Numerical results

for a series of problems show that the proposed method, i.e. ST-RFM with STC and

ST-RFM with SoV, have spectral accuracy in both space and time. In addition, ST-RFM

only requires collocation points, not a mesh. This is important for solving problems with

complex geometry. We demonstrate this by using ST-RFM to solve a two-dimensional

wave equation over a complex domain. The two strategies differ significantly in terms

of the behavior in time. In the case when block time-marching is used, we prove a lower

error bound that shows an exponentially growing factor with respect to the number of

blocks in time. For ST-RFM, we prove an upper bound with a sublinearly growing factor

with respect to the number of subdomains in time. These estimates are also confirmed

by numerical results.
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1. Introduction

Time-dependent partial differential equations (PDEs), such as diffusion equation, wave

equation, Maxwell equation, and Schrödinger equation, are widely used for modeling the

dynamic evolution of physical systems. Numerical methods, including finite difference

method [11], finite element methods [17], and spectral methods [15], have been proposed

to solve these PDEs. Despite the great success in theory and application, these methods still

face some challenges, to name a few, complex geometry, mesh generation, and possibly high

dimensionality.

Along another line, the success of deep learning in computer vision and natural lan-

guage processing [8] attracts great attention in the community of scientific computing. As

a special class of functions, neural networks are proved to be universal approximators to

continuous functions [3]. Many researchers seek for solving ordinary and partial differ-

ential equations with neural networks [5–7, 9, 14, 16, 19]. Since the PDE solution can be

defined in the variational (if exists), strong, and weak forms, deep Ritz method [5], deep

Galerkin method [16] and physics-informed neural networks [14], and weak adversarial

network [19] are proposed using loss (objective) functions in the variational, strong, and

weak forms, respectively. Deep learning-based algorithms have now made it fairly routine

to solve a large class of PDEs in high dimensions without the need for mesh generation of

any kind.

For low-dimensional problems, traditional methods are accurate, with reliable error

control, stability analysis and affordable cost. However, in practice, coming up with a suit-

able mesh is often a highly non-trivial task, especially for complex geometry. On the con-

trary, machine-learning methods are mesh-free and only collocation points are needed.

Even for low-dimensional problems, this point is still very attractive. What bothers a user

is the absence of reliable error control in machine-learning methods. For example, without

an exact solution, the numerical approximation given by a machine-learning method does

not show a clear trend of convergence as the number of parameters increases.

There are some efforts to combine the merits of traditional methods and deep-learning

based methods. The key ingredient is to replace deep neural networks by a special class

of two-layer neural networks with the inner parameters fixed, known as random features

[12, 13] or extreme learning machine [10]. Random feature functions are proved to be

universal approximators as well, meanwhile only the parameters of the output layer need

to be optimized, leading to a convex optimization problem. Extreme learning machines are

employed to solve ordinary and partial differential equations in [18] and [1], respectively.

Spectral accuracy is obtained for problems with analytic solutions, and the simplicity of

network architectures reduces the training difficulty in terms of execution time and solu-

tion accuracy, compared to deep neural networks. In [4], a special kind of partition of unity

(PoU), termed as domain decomposition, is combined with extreme learning machines to

approximate the PDE solution and the block time-marching strategy is proposed for long

time simulations. Spectral accuracy is obtained in both space and time for analytic solu-

tions, but the error grows exponentially fast in most cases as the simulation time increases.

In [2], combining PoU and random feature functions, the random feature method (RFM) is


