
East Asian Journal on Applied Mathematics Vol. 13, No. 3, pp. 759-790

doi: 10.4208/eajam.2022-352.280423 August 2023

Extension of the ENO-ET Reconstruction Scheme

to Two Space Dimensions on Cartesian Meshes

in Conjunction with the ADER Approach

Gino I. Montecinos1,* and Eleuterio F. Toro2

1Department of Mathematical Engineering, Universidad de La Frontera,

Francisco Salazar, 01145, Temuco, Chile.
2Laboratory of Applied Mathematics, DICAM, University of Trento,

Via Mesiano, 77, 38123, Trento, Italy.

Received 18 December 2022; Accepted (in revised version) 28 April 2023.

Dedicated to Professor Tao Tang on the occasion of his 60th birthday.

Abstract. Godunov’s Theorem [S.K. Godunov, Mat. Sb. 47 (1959)], stated more than

six decades ago, set the framework for understanding the limitations of linear numer-

ical schemes for approximating hyperbolic equations numerically. This theoretical re-

sult sets one of the basic requirements for constructing high-order numerical schemes,

namely non-linearity. In the present article we are concerned with modifications to

essentially-non-oscillatory (ENO) non-linear reconstruction approach, along with fully

discrete ADER schemes to derive methods of arbitrary order of accuracy in space and

time. Here we extend a recently proposed ENO-ET scheme for one-dimensional prob-

lems to two space dimensions with Cartesian meshes. The methods are implemented

up to fifth order of accuracy and assessed via three scalar 2D problems, namely the lin-

ear advection equation, Burgers equation and a kinematic frontogenesis model used in

meteorology. Empirical convergence rates are studied for the classical ENO, classical

WENO and the newly proposed ENO-ET. For smooth solutions results from the newly

proposed ENO-ET reconstruction scheme are superior to those of conventional ENO in

terms of theoretically expected convergence rates and size of errors. Compared to the

results obtained with WENO reconstruction, the performance of ENO-ET for second and

third orders is superior. For discontinuous solutions, again ENO-ET is superior, in that it

captures wave amplitudes more accurately than ENO as accurate as WENO and, unlike

ENO, exhibits no spurious oscillations near discontinuities.
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1. Introduction

Godunov’s theorem [13] sets the framework for understanding the limitations of linear

numerical schemes for approximating hyperbolic equations numerically. This theoretical re-
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sult also sets one of the basic requirements for constructing high-order numerical schemes,

namely non-linearity. There are two main approaches to construct non-linear schemes to

approximate hyperbolic equations the total variation diminishing (TVD) methods pioneered

by Kolgan [20] (see also [34,42], and the schemes based on non-linear spatial reconstruc-

tions pioneered by Harten and Osher [18] (see also [16, 17]). In the present article we

are concerned with numerical schemes based non-linear reconstructions. For decades, the

essentially-non-oscillatory (ENO) approach [18] has been one of the key approaches to gen-

erate non-linear reconstruction procedures. Interpolations can be derived from point-wise

samples or cell integral averages, the latter being more suitable for finite volume schemes.

It is well known that interpolations can suffer from the Runge phenomenon [21]. Piece-

wise interpolation overcomes the Runge phenomenon by defining local and independent

polynomials for each cell. ENO reconstructions use an adaptive stencil coupled to a local

smoothness criterion to avoid, as much as possible, interpolations across discontinuities.

Local truncation error analysis allows us to formally verify that the ENO reconstruction is

uniformly high-order and can also capture sharp discontinuities with much reduced spu-

rious oscillations. However, there is no closed convergence theory for ENO schemes and

analysis of the properties of the methods has to be done case by case. In this sense, there

exists evidence that the ENO reconstruction procedure fails, even for the linear advection

equation with smooth initial condition. For instance Rogerson and Meiburg [28] have re-

ported the lack of accuracy for the initial condition q(x , 0) = e−x . A similar failure was

detected by Shu [31] for q(x , 0) = sin4(πx). The source of the difficulties in both cases is

the selection of the linearly unstable downwind stencil which causes a switching of stencils

and avoid error cancellations in conservative schemes. In [31], Shu proposed a modifica-

tion of ENO consisting of changing the stencil selection criterion, such that this is biased

to the central stencil. The modification recovers the expected theoretical order of accuracy.

A successful way of escaping from the limitations of ENO is the weighted essentially non-

oscillatory (WENO) approach pioneered by Jiang and Shu [19] (see also [8, 22]). In the

present work we stay with ENO and ENO-type schemes, as these are relatively simple as

compared to WENO schemes.

In recent years, various modifications to the ENO reconstruction scheme has been pro-

posed, including the already mentions mENO of Shu [31]. Fu and collaborators [11, 12]

also proposed a family of ENO-type schemes, called targeted ENO (TENO). Another ENO-

type scheme is the averaged ENO reconstruction (AENO) reported in [38], where two

neighbouring polynomials are averaged the ENO polynomial and that from the neighbour-

ing stencil in the central direction. A recently proposed ENO-type reconstruction procedure

ENO-ET [27], is based on extended stencils obtained from the ENO search. Numerical ev-

idence for the one-dimensional case [27] shows that ENO-ET can attain the theoretically

expected convergence rates for high-order schemes applied to the linear advection and the

Euler equations with smooth profiles. The schemes has also overcome the lack of accuracy

of ENO for the initial condition sin4(πx).

Reconstruction procedures can be employed in semidiscrete approaches [3, 32, 33] or

fully discrete approaches, such as those of the family of ADER (Arbitrary DERivative Rie-

mann problem approach) [9, 23, 29, 35, 36, 39, 41]. In the ADER schemes, the spatial and


