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Abstract. This paper explores the difficulties in solving partial differential equations
(PDEs) using physics-informed neural networks (PINNs). PINNs use physics as a reg-
ularization term in the objective function. However, a drawback of this approach is the
requirement for manual hyperparameter tuning, making it impractical in the absence
of validation data or prior knowledge of the solution. Our investigations of the loss
landscapes and backpropagated gradients in the presence of physics reveal that exist-
ing methods produce non-convex loss landscapes that are hard to navigate. Our find-
ings demonstrate that high-order PDEs contaminate backpropagated gradients and
hinder convergence. To address these challenges, we introduce a novel method that
bypasses the calculation of high-order derivative operators and mitigates the contam-
ination of backpropagated gradients. Consequently, we reduce the dimension of the
search space and make learning PDEs with non-smooth solutions feasible. Our method
also provides a mechanism to focus on complex regions of the domain. Besides, we
present a dual unconstrained formulation based on Lagrange multiplier method to en-
force equality constraints on the model’s prediction, with adaptive and independent
learning rates inspired by adaptive subgradient methods. We apply our approach to
solve various linear and non-linear PDEs.
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1 Introduction

A wide range of physical phenomena can be explained with partial differential equations
(PDEs), including sound propagation, heat and mass transfer, fluid flow, and elasticity.
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The most common methods (i.e., finite difference, finite volume, finite element, spectral
element) for solving problems involving PDEs rely on domain discretization. Thus, the
quality of the mesh heavily influences the solution error. Moreover, mesh generation
can be tedious and time-consuming for complex geometries or problems with moving
boundaries. While these numerical methods are efficient for solving forward problems,
they are not well-suited for solving inverse problems, particularly data-driven modeling.
In this regard, neural networks can be viewed as an alternative meshless approach to
solving PDEs.

Dissanayake and Phan-Thien [1] introduced neural networks as an alternative ap-
proach to solving PDEs. The authors formulated a composite objective function that ag-
gregated the residuals of the governing PDE with its boundary condition to train a neural
network model. Independent from work presented in [1], van Milligen et al. [2] also pro-
posed a similar approach for the solution of a two-dimensional magnetohydrodynamic
plasma equilibrium problem. Several other researchers adopted the work in [1, 2] for the
solution of nonlinear Schrodinger equation [3], Burgers equation [4], self-gravitating N
body problems [5], and chemical reactor problem [6]. Unlike earlier works, Lagaris et
al. [7] proposed to create trial functions for the solution of PDEs that satisfied the bound-
ary conditions by construction. However, their approach is not suitable for problems
with complex geometries. It is possible to create many trial functions for a particular
problem. But to choose an optimal trial function is a challenging task, particularly for
PDEs.

Recently, the idea of formulating a composite objective function to train a neural net-
work model following the approach in [1, 2] has found a resurgent interest thanks to the
works in [8–10]. This particular way of learning the solution to strong forms of PDEs is
commonly referred to as physics-informed neural networks (PINNs) [9]. PINNs employ
physics as a regularizing term in their objective function. However, this approach brings
forth the challenge of manually adjusting the corresponding hyperparameters. Further-
more, the absence of validation data or prior knowledge of the solution to the Partial
Differential Equation (PDE) can render PINNs impracticable. The deep Ritz method has
been proposed to solve variational problems arising from PDEs [8]. This method enforces
boundary conditions through a hyperparameter that cannot be tuned without validation
data or prior knowledge of the solution. Thus, it is not well-suited for solving forward
problems. There is a growing interest in using neural networks to learn the solution to
PDEs [11–18]. Despite the great promise of PINNs for the solution of PDEs, several tech-
nical issues remained a challenge, which we discuss further in Section 2.2. Different from
the earlier approaches [1,2,6,9], we recently proposed physics and equality constrained arti-
ficial neural networks (PECANNs) that are based on constrained optimization techniques.
Furthermore, we used a maximum likelihood estimation approach to seamlessly inte-
grate noisy measurement data and physics while strictly satisfying the boundary con-
ditions. In Section 4, we discuss our proposed formulation, constrained optimization
problem, and unconstrained dual problem.

Our contribution is summarized as follows:


	Introduction

