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Abstract. For steady Euler equations in complex boundary domains, high-order shock-
capturing schemes usually suffer not only from the difficulty of steady-state conver-
gence but also from the problem of dealing with physical boundaries on Cartesian
grids to achieve uniform high-order accuracy. In this paper, we utilize a fifth-order
finite difference hybrid WENO scheme to simulate steady Euler equations, and the
same fifth-order WENO extrapolation methods are developed to handle the curved
boundary. The values of the ghost points outside the physical boundary can be ob-
tained by applying WENO extrapolation near the boundary, involving normal deriva-
tives acquired by the simplified inverse Lax-Wendroff procedure. Both equivalent ex-
pressions involving curvature and numerical differentiation are utilized to transform
the tangential derivatives along the curved solid wall boundary. This hybrid WENO
scheme is robust for steady-state convergence and maintains high-order accuracy in
the smooth region even with the solid wall boundary condition. Besides, the essen-
tially non-oscillation property is achieved. The numerical spectral analysis also shows
that this hybrid WENO scheme has low dispersion and dissipation errors. Numerical
examples are presented to validate the high-order accuracy and robust performance of
the hybrid scheme for steady Euler equations in curved domains with Cartesian grids.
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1 Introduction

The steady-state Euler equations play an important role in the shape optimal design of
aircraft and vehicles. There are three significant difficulties in satisfactorily solving these
equations. First, the detailed features of strong discontinuities are hard to be resolved by
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the numerical scheme. Second, the residual is difficult to converge to an ideal level, close
to machine zero. Third, the complex physical boundary should be treated carefully to
avoid large errors introduced near the border.

In order to resolve the strong discontinuities with high resolution, the high-order
WENO (weighted essentially non-oscillatory) schemes are popular choices to discretize
the spatial derivative. There are many WENO schemes developed to solve the unsteady
Euler equations, such as the WENO-JS [23, 40], WENO-Z [3, 5] schemes, etc. These
schemes not only can obtain the optimal order of accuracy in the smooth region, but also
can achieve the essentially non-oscillatory property. To improve the efficiency of WENO
schemes, researchers often adopt hybrid approaches [29–31, 64, 65, 75, 77]. Usually, the
computational domain is divided into two parts: the smooth region and the non-smooth
region. In the smooth region, the high-order linear scheme is used. In the non-smooth
region, a certain WENO scheme is used. When the smooth region takes up most of the
computational domain and the linear scheme is less costly, the hybrid approach can save
significant computational time. Meanwhile, the effect of the hybrid scheme is heavily
based on the proposed smoothness detector. Many types of shock detectors have ap-
peared and people can refer to these literature [10, 12, 16, 17, 20, 28, 52, 58, 59, 66, 68, 71, 78].
If readers are interested in the history of WENO schemes, we refer to [32, 35, 55, 76] for
more details.

Many studies have shown that the classical WENO and hybrid WENO schemes are
efficient choices for the simulation of unsteady flows; however, when applied to the solu-
tion of steady-state problems with strong discontinuities, one is confronted with the sec-
ond difficulty, i.e. the residual of the numerical solution usually stops at the level of the
truncation error rather than settling down to the machine zero. To improve steady-state
convergence, Serna and Marquina reconstructed the numerical flux by a new kind of lim-
iter in [53]. Zhang and Shu [73, 74] pointed out that the appearance of slight post-shock
oscillations has a tremendous impact on steady-state convergence, which is the key rea-
son for the defective steady-state convergence phenomenon. After that, Zhang et al. pro-
posed the upwind-biased interpolation technique [72,74] to improve steady-state conver-
gence. However, the convergence phenomenon still seems unsatisfactory when shocks
pass the physical boundary. In [7, 8], the authors solved steady-state hyperbolic con-
servation laws using fast sweeping methods with Lax-Friedrichs numerical fluxes and
improved steady-state convergence by designing novel multigrid fast sweeping meth-
ods. Engquist et al. [13, 14] further pointed out that fast sweeping methods efficiently
solve steady-state conservation laws. Hao et al. [19] utilized the homotopy method to
solve the nonlinear system obtained by WENO discretizations. The nonlinear system
should be treated carefully since its solutions are not unique. Liu et al. [38] developed an
adaptive Runge-Kutta discontinuous Galerkin method to solve both unsteady and steady
Euler equations on Cartesian grids, and the robustness of steady-state convergence still
needs to be enhanced. Hu et al. [21, 22] used non-oscillatory k-exact reconstruction to
solve steady-state Euler equations and enhanced the approximation accuracy of curved
boundaries by nonuniform rational B-splines [45, 46]. Chen [6] and Wu et al. [69,74] pro-
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