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1 Correction on a missing weight constant

Our previous paper on the multi-scale deep neural network (MscaleDNN) in [2] contains
an error: a constant αd

i or its inverse is missing outside fi(·) or fθni (·) in Eqs. (2.10), (2.11),
(2.14) and (2.15). The following text should replace the corresponding paragraphs in [2] to
correct this error.

From (2.5), we can apply a simple down-scaling to convert the high frequency region
Ai to a low frequency region. Namely, we define a scaled version of f̂i(k) as

f̂ (scale)
i (k)= f̂i(αik), αi >1, (2.9)

and, correspondingly in the physical space

f (scale)
i (x)= fi

( 1
αi

x
) 1

αd
i

, (2.10)
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or
fi(x)=αd

i f (scale)
i (αix). (2.11)

We can see the low frequency spectrum of the scaled function f̂ (scale)
i (k) if αi is chosen

large enough, i.e.,

supp f̂ (scale)
i (k)⊂

{
k∈Rd,

(i−1)K0

αi
≤|k|≤ iK0

αi

}
. (2.12)

Using the F-Principle of common DNNs (Ref. [27] in [2]), with iK0/αi being small, we can
train a DNN fθni (x), with θni denoting the DNN parameters, to learn f (scale)

i (x) quickly

f (scale)
i (x)∼ fθni (x), (2.13)

which gives an approximation to fi(x) immediately

fi(x)∼αd
i fθni (αix) (2.14)

and to f (x) as well

f (x)∼
M

∑
i=1

αd
i fθni (αix). (2.15)

3 Numerical results with the corrected MscaleDNN (2.15)

In this section, we present several numerical tests on approximation and solving PDEs to
demonstrate the necessity of the missing factor αi in front of the subnetworks fθni (·) in
(2.15), which results in faster training and lower generalization errors, as shown in Fig. 1
and later sections.

Three networks will be tested: FNN – fully connected neural network; MscaleDNN –
the one missing the αi weights; MscaleDNN-corrected – the corrected one with weight
factor αi included. In the comparison tests, we use the same compact activation functions
in [2],

ϕ(x)=ReLU(x)2−3ReLU(x−1)2+3ReLU(x−2)2−ReLU(x−3)2. (3.1)

3.1 Approximation of a 2-D oscillatory function

The target function for the fitting problem is u(x,y) = 1
N2 ∑N

m=1 ∑N
n=1 esin(2πmx)ecos(2πny),

(x,y)∈ [−1,1]2, where N = 20. 5000 training data at each epoch are randomly sampled
from [−1,1]2. DNNs are trained by the Adam optimizer with a learning rate 0.0001 and
initialized with a Glorot-normal. We compare the following different network structures:
(1) FNN with a size 2-1600-1600-1600-1; (2) MscaleDNN with eight subnetworks with
a size 2-200-200-200-1 each and scales {1,2,4,8,16,32,64,128}; (3) MscaleDNN-corrected
with eight subnetworks with a size 2-200-200-200-1 each and same scales as MscaleDNN.

In Fig. 2, we show the target function and the DNN solutions on fixed x=−0.6 and
y=0.2. The MscaleDNN-corrected performs better than the MscaleDNN and FNN.


