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gorithm.
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1 Correction on a missing weight constant

Our previous paper on the multi-scale deep neural network (MscaleDNN) in [2] contains
an error: a constant txf or its inverse is missing outside f;(-) or fg () in Egs. (2.10), (2.11),
(2.14) and (2.15). The following text should replace the corresponding paragraphs in [2] to
correct this error.

From (2.5), we can apply a simple down-scaling to convert the high frequency region
A; to a low frequency region. Namely, we define a scaled version of ﬁ(k) as

FE 1) = Fi(wik), ai>1, (2.9)
and, correspondingly in the physical space
(scale) _r l l
—fi (x)_fl(“jx> [X‘ijl (210)
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or

filo) =l ) (w). @11)
We can see the low frequency spectrum of the scaled function f(scale (k) if «; is chosen
large enough, i.e.,

i—1)Ko

suppf}scale) (k) C {k eR?, ( <|k|<— Ko } (2.12)

& o

Using the F-Principle of common DNNSs (Ref. [27] in [2]), with iKp/ «; being small, we can

train a DNN fy; (x), with 6" denoting the DNN parameters, to learn f scale) (x) quickly
£ () ~ fi (), (213)
which gives an approximation to f;(x) immediately
fi(x) ~ad fo (i) (2.14)
and to f(x) as well
M
x)~ sz’ffgn,- (aix). (2.15)
i=1

3 Numerical results with the corrected MscaleDNN (2.15)

In this section, we present several numerical tests on approximation and solving PDEs to
demonstrate the necessity of the missing factor «; in front of the subnetworks fy () in
(2.15), which results in faster training and lower generalization errors, as shown in Fig. 1
and later sections.

Three networks will be tested: FNN — fully connected neural network; MscaleDNN —
the one missing the «; weights; MscaleDNN-corrected — the corrected one with weight
factor «; included. In the comparison tests, we use the same compact activation functions
in [2],

¢(x) =ReLU(x)?—3ReLU(x—1)>+3ReLU(x—2)*—~ReLU(x—3)>. (3.1)

3.1 Approximation of a 2-D oscillatory function

The target function for the fitting problem is u(x,y) = N2 YN_ YN esin(rma) geos(2rny)
(x,y) € [-1,1]%, where N =20. 5000 training data at each epoch are randomly sampled
from [—1,1]2. DNNs are trained by the Adam optimizer with a learning rate 0.0001 and
initialized with a Glorot-normal. We compare the following different network structures:
(1) FNN with a size 2-1600-1600-1600-1; (2) MscaleDNN with eight subnetworks with
a size 2-200-200-200-1 each and scales {1,2,4,8,16,32,64,128}; (3) MscaleDNN-corrected
with eight subnetworks with a size 2-200-200-200-1 each and same scales as MscaleDNN.
In Fig. 2, we show the target function and the DNN solutions on fixed x = —0.6 and
y=0.2. The MscaleDNN-corrected performs better than the MscaleDNN and FNN.



