
Numer. Math. Theor. Meth. Appl. Vol. 16, No. 3, pp. 769-791

doi: 10.4208/nmtma.OA-2022-0201 August 2023

MC-Nonlocal-PINNs: Handling Nonlocal

Operators in PINNs Via Monte Carlo Sampling

Xiaodong Feng1,*, Yue Qian1 and Wanfang Shen2

1 Institute of Computational Mathematics and Scientific/Engineering

Computing, Academy of Mathematics and Systems Science, Chinese
Academy of Sciences, Beijing, China
2 Shandong Key Laboratory of Blockchain Finance, Shandong University

of Finance and Economics, Jinan 250014, China

Received 26 December 2022; Accepted (in revised version) 13 March 2023

Abstract. We propose Monte Carlo Nonlocal physics-informed neural networks

(MC-Nonlocal-PINNs), which are a generalization of MC-fPINNs in L. Guo et al.

(Comput. Methods Appl. Mech. Eng. 400 (2022), 115523) for solving general non-
local models such as integral equations and nonlocal PDEs. Similar to MC-fPINNs,

our MC-Nonlocal-PINNs handle nonlocal operators in a Monte Carlo way, resulting

in a very stable approach for high dimensional problems. We present a variety of
test problems, including high dimensional Volterra type integral equations, hyper-

singular integral equations and nonlocal PDEs, to demonstrate the effectiveness of
our approach.
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1. Introduction

Deep neural networks have gained a growing interest in recent years with a wide

variety of methods ranging from computer vision and natural language processing to

simulations of physical systems [9, 10, 18, 27]. A representative example is physics-

informed neural networks (PINNs) [23], whose central idea is to incorporate governing

laws of physical systems into the training loss function and recast the original problem

into an optimization problem. PINNs have demonstrated remarkable success in appli-

cations including fluid mechanics [3,24], high dimensional PDEs (with applications in

computational finance) [14, 15, 33], uncertainty quantification [13, 16, 19, 22, 31, 34],

to name just a few.
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For PDE models with classic (integer) derivatives, PINNs adopt automatic differ-

entiation to solve PDEs by penalizing the PDE in the loss function at a random set of

points in the domain of interest. However, for PDE models involving nonlocal opera-

tors, one can no longer use automatic differentiation to handle the operators due to

the nonlocal property. To overcome this issue, fPINNs [21] were developed for solv-

ing space-time fractional advection-diffusion equations. The main idea in [21] is to

introduce a classic discretization technique to handle the fractional operator. However,

this is not a good choice for high dimensional problems since the curse of dimension-

ality. Similar idea has been used to handle more general non-local operators in [20],

while the approach again can not be used for high dimensional cases. We also mention

the work [32], where so-called A-PINN was proposed to handle some special types of

integral equations.

More recently, the MC-fPINNs approach was proposed in [12] to handle fractional

PDEs, where the fractional operators are handled in a Monte Carlo way, resulting in

a very stable approach for high dimensional problems. Take the fractional Laplacian

equation as an example

(−∆)
α

2 u(x) = Cd,α P.V.

∫

Rd

u(x)− u(y)

‖x− y‖d+α
2

dy, 0 < α < 2, (1.1)

where P.V. denotes the principle value of the integral and Cd,α is a constant depending

on α and d. One can divide the integral into the following two parts:

(−∆)
α

2 u(x) = Cd,α

(

∫

y∈Br0
(x)

u(x)− u(y)

‖x− y‖d+α
2

dy +

∫

y/∈Br0
(x)

u(x)− u(y)

‖x− y‖d+α
2

dy

)

. (1.2)

It is shown that the fractional Laplacian of u(x) can be calculated via the following

approximation:

(−∆)
α

2 u(x) = Cd,α
|Sd−1|r2−α

0

2(2− α)
Eξ,rI∼fI(r)

[

2u(x)−u(x−rIξ)−u(x+rIξ)

r2I

]

+ Cd,α
|Sd−1|r−α

0

2α
Eξ,rO∼fO(r)

[

2u(x)−u(x−rOξ)−u(x+rOξ)
]

, (1.3)

where |Sd−1| denotes the surface area of Sd−1, ξ is uniformly distributed on the sphere

Sd−1, and rI , rO can be quickly sampled via

rI
r0
∼ Beta(2− α, 1),

r0
rO
∼ Beta(α, 1). (1.4)

More precisely, one can resort to the classic Monte Carlo sampling to handle the frac-

tional Laplacian (see [12] for more details).

The main aim of this work is to extend the idea in [12] to more general nonlocal

operators. Our new contributions are summarized as follows:


