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Abstract. We propose finite-volume schemes for the Cahn-Hilliard equation which
unconditionally and discretely preserve the boundedness of the phase field and the
dissipation of the free energy. Our numerical framework is applicable to a variety
of free-energy potentials, including Ginzburg-Landau and Flory-Huggins, to general
wetting boundary conditions, and to degenerate mobilities. Its central thrust is the up-
wind methodology, which we combine with a semi-implicit formulation for the free-
energy terms based on the classical convex-splitting approach. The extension of the
schemes to an arbitrary number of dimensions is straightforward thanks to their di-
mensionally split nature, which allows to efficiently solve higher-dimensional prob-
lems with a simple parallelisation. The numerical schemes are validated and tested
through a variety of examples, in different dimensions, and with various contact angles
between droplets and substrates.
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1 Introduction

The Cahn-Hilliard (CH) equation is a popular phase-field model initially proposed in [18]
to describe the process of phase separation in binary alloys. Since then, it has found innu-
merable applications, from capillarity–wetting phenomena [3,56] and diblock copolymer
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molecules [65] to tumour growth [39, 60], image inpainting [12, 16, 21] and topology op-
timization [66]; see the review [45].

Like all phase-field models, the CH equation avoids the explicit treatment of sharp
interfaces altogether via thin transition regions through which pertinent variables and
physical properties vary rapidly but continuously. It has a gradient-flow structure of the
form

∂ϕ

∂t
=∇·

(
M(ϕ)∇δF [ϕ]

δϕ

)
, (1.1)

where ϕ is the phase-field, a continuous function of time and space which plays the role of
an order parameter describing the phases of the system. In a binary system, the limiting
values ϕ = 1 and ϕ =−1 represent each of the two phases. The mobility M(ϕ) may be
degenerate [34, 44] with zeros at ϕ=±1,

M(ϕ)=M0(1−ϕ)(1+ϕ), (1.2)

or may be taken as a constant, M(ϕ)=M0 [3].
The free energy F [ϕ] of the solution to Eq. (1.1) is given by

F [ϕ]=
∫

Ω

(
H(ϕ)+

ε2

2
|∇ϕ|2

)
dΩ+

∫
∂Ω

fw(ϕ,β)ds, (1.3)

where H(ϕ) is a double-well potential with minima at, or close to, ϕ=±1 which corres-
pond to the stable phases in the system, ε is a positive parameter related to the width of
the diffuse interface (see, for instance, [23]), and fw(ϕ,β) is the wall free energy, a function
of the phase field at the boundary parametrised by the equilibrium contact angle β [61];
see Fig. 1 for a schematic of a droplet on a solid substrate with contact angle β. The vari-
ation of the free energy with respect to the phase field, δF [ϕ]

δϕ , is known as the chemical
potential, denoted ξ. The boundary conditions for (1.1) are a combination of the natural
boundary condition for the wall free energy and the no-flux condition for the chemical
potential [3, 47],

ε2∇ϕ·n=− f ′w(ϕ,β), M(ϕ)∇ξ ·n=0, (1.4)

where n is an inward-pointing unit vector normal to the wall and f ′w(ϕ,β) denotes the
derivative of fw(ϕ,β) with respect to the phase-field.

The form of the term fw(ϕ,β) has received considerable attention in the literature.
Early contributions considered a linear form, see [52] for instance. Here we shall assume
that the function fw has bounded second derivative on [−1,1], so that it can be split into
a convex part and a concave part satisfying

fw(ϕ,β)= fc,w(ϕ,β)− fe,w(ϕ,β), (1.5)

where fc,w and fe,w are convex functions. A good choice is a cubic polynomial [3, 56–58]:
the lowest-order polynomial which permits the minimization of the wall free energy for
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