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Abstract. An American exchange option is a rainbow option with two underlying assets,

whose pricing model is a two-dimensional free boundary problem and is equivalent to

a parabolic variational inequality problem on a two-dimensional unbounded domain.

The present work proposes an effective numerical method for this complex problem.

We first reduce the problem into a one-dimensional linear complementarity problem

(LCP) on a bounded domain based on a dimension reduction transformation, an a priori

estimate for the optimal exercise boundary, and a far-field truncation technique. This

LCP is then approximated by a finite element method with a geometric partition in the

spatial direction and a backward Euler method with a uniform partition in the temporal

direction. The convergence order of the fully discretized scheme is established as well.

Further, according to the features of the discretized system, a primal-dual active-set

(PDAS) method is imposed to solve this problem to obtain the option price and the

optimal exercise boundary simultaneously. Finally, several numerical simulations are

carried out to verify the theoretical results and effectiveness of the proposed method.
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1. Introduction

The development of financial derivatives has received more and more attention in the

wave of economic globalization in recent decades. The option, as an important financial

derivative, is a contract that the holder could but is not obligated to purchase (call option) or

sell (put option) a certain amount of the underlying asset at a prescribed price during a fixed

time. The option price depends on the underlying asset’s price and occupies a significant

position in hedging strategy [18]. There are mainly two types of options, European and

American ones. The former can only be exercised on the maturity date specified in the
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contract, while the latter can be exercised on any business day on or before the maturity

date. This leads to the distinction that the European option has a closed-form solution

while the American option does not. Hence, numerical approximations are essential for

American options.

The modern option pricing theory was funded by Black and Scholes’ seminal work [3]

in 1973. They introduced the Black-Scholes (B-S) equation for the option price, which

could be used for various options with one risky asset. Since then, the valuation of options

has attracted the attention of researchers. With the development of the financial market,

the classic option defined on one risk asset can not satisfy the investor’s demand [25].

Therefore, the option based on multiple risk assets, namely multi-asset options, is booming.

In general, multi-asset options can be divided into three categories for portfolios: rainbow

options [5], basket options [11], and quanto options [34]. An exchange option is a rainbow

option that gives the option holder the right to exchange a given quantity of one asset for

a given quantity of another. It is predominantly used in foreign exchange, fixed-income,

and equity markets. Compared with the classic single-asset option, the exchange option has

become one of the hot topics gradually in the field of option pricing because of its flexibility.

In 1978, Margrabe [24]was the first to establish the pricing formula of the European ex-

change option under the B-S framework, where correlated geometric Brownian motion pro-

cesses modeled the underlying asset prices, and the payoff of the exchange option depended

on the price difference between two underlying assets. In the same year, Fischer [10] also

investigated the pricing issue of exchange options, and accounted for the situation where

exercise price was the price of an untraded asset. The approach of Margrabe was gen-

eralized by Wong [32] in 2008, and they relaxed some restrictions on the drift terms of

geometric Brownian motion processes. There are many models derived from the exchange

options, such as spread options [23], power exchange options [33], and so on. This paper

concentrated on the more significant American exchange option pricing problem.

Since the emergence of the B-S model, researchers have tried to derive explicit expres-

sion of option price for American options, but they all failed due to the presence of the

optimal exercise boundary. There are now two approaches to solving the option pricing

model, one is the analytical approximation, and the other is the numerical solution. Ana-

lytical approaches include the polynomial-time approximate algorithm [6], the Taylor ex-

pansion approximation [27], the time-recursive way [21], the fast Fourier transform [22],

and others. For numerical methods for the valuation of American options, there are the

binomial method [8], the Monte Carlo simulation [26], the finite difference [19] and the

finite element method [28,29]. This paper studies the numerical method to price American

exchange options.

According to the work of predecessors, there are three main difficulties in the numerical

treatment of American exchange options:

(1) The solution region is a two-dimensional unbounded domain, so it is not easy to

design the numerical algorithm directly, and the calculation is time-consuming.

(2) The pricing model is a backward variable-coefficient problem, and the optimal exer-

cise boundary is unknown, dramatically increasing the problem’s nonlinearity.


