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Abstract. We develop a class of conservative integrators for the regularized log-

arithmic Schrödinger equation (RLogSE) using the quadratization technique and

symplectic Runge-Kutta schemes. To preserve the highly nonlinear energy func-
tional, the regularized equation is first transformed into an equivalent system that

admits two quadratic invariants by adopting the invariant energy quadratization
approach. The reformulation is then discretized using the Fourier pseudo-spectral

method in the space direction, and integrated in the time direction by a class of

diagonally implicit Runge-Kutta schemes that conserve both quadratic invariants to
round-off errors. For comparison purposes, a class of multi-symplectic integrators

are developed for RLogSE to conserve the multi-symplectic conservation law and

global mass conservation law in the discrete level. Numerical experiments illustrate
the convergence, efficiency, and conservative properties of the proposed methods.
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1. Introduction

In this paper, we are concerned with conservative numerical integrations of a spe-

cific type of nonlinear Schrödinger equations (NLSEs), i.e., the regularized version of

the logarithmic Schrödinger equation (LogSE). The LogSE which was introduced as

a model of nonlinear wave mechanics [7] as follows:

∗Corresponding author. Email addresses: qianxu@nudt.edu.cn (X. Qian), zhanghnudt@163.com

(H. Zhang), yanjingye0205@163.com (J. Yan), shsong@nudt.edu.cn (S. Song)

http://www.global-sci.org/nmtma 993 ©2023 Global-Science Press



994 X. Qian, H. Zhang, J. Yan and S. Song

{
iut(x, t) + ∆u(x, t) = λu(x, t) ln

(
|u(x, t)|2

)
, x ∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω̄
(1.1)

with homogeneous Dirichlet boundary conditions or periodic boundary conditions post-

ed on the boundary. It has found wide applications in different branches of fundamental

physics, such as nuclear physics [22], quantum optics [8], diffusion phenomena [21],

and Bose-Einstein condensation [52].

Similar to the usual NLSE with power-like nonlinearity,

iut(x, t) + ∆u(x, t) = µ|u(x, t)|2σu(x, t), x ∈ Ω, t > 0, (1.2)

the LogSE (1.1) conserves the global mass, momentum, and energy [12], which are

defined, respectively, as

M(u) :=

∫

Ω
|u|2dx ≡ M(u0), (1.3)

P (u) := Im

∫

Ω
u∇udx ≡ P (u0), (1.4)

E(u) :=

∫

Ω

(
|∇u|2 + λ|u|2 ln(|u|2)

)
dx ≡ E(u0). (1.5)

In the LogSE, the function u → u ln(|u|2) is not Lipschitz continuous at u = 0
because of the singularity of the logarithm at the origin; thus, one cannot directly

apply the schemes developed for NLSE to LogSE. To avoid numerical blow-ups and

suppress round-off errors due to the logarithmic nonlinearity in the LogSE, a regular-

ized logarithmic Schrödinger equation (RLogSE) with a small parameter 0 < ǫ ≪ 1
was introduced by Bao et al. [2] as

{
iuǫt(x, t) + ∆uǫ(x, t) = λuǫ(x, t) ln

(
ǫ+ |uǫ(x, t)|

)2
, x ∈ Ω, t > 0,

uǫ(x, 0) = u0(x), x ∈ Ω̄.
(1.6)

The RLogSE (1.6) approximates the LogSE (1.1) with linear convergence rate O(ǫ),
and has conservation laws similar to those of the original model, i.e., conservation of

mass M ǫ(uǫ) := M(uǫ) and momentum P ǫ(uǫ) := P (uǫ), as well as the regularized

energy conservation law [2] defined as

Eǫ(uǫ) :=

∫

Ω

[
|∇uǫ|2 + 2ǫλ|uǫ|+ 2λ(|uǫ|2 − ǫ2) ln(ǫ+ |uǫ|)

]
dx ≡ Eǫ(u0).

Denoting ρ(uǫ) = |uǫ|2, it holds that

Eǫ(uǫ) =

∫

Ω

[
|∇uǫ|2 + λFǫ(ρ(u

ǫ)) + λρ(uǫ)
]
dx,

Fǫ(ρ) =

∫ ρ

0
fǫ(s)ds = 2(ρ− ǫ2) ln(ǫ+

√
ρ)− ρ+ 2ǫ

√
ρ,

fǫ(ρ) =
dFǫ(ρ)

dρ
= 2 ln(ǫ+

√
ρ).


