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Abstract. A Nitsche-based element-free Galerkin (EFG) method for solving semilinear
elliptic problems is developed and analyzed in this paper. The existence and unique-
ness of the weak solution for semilinear elliptic problems are proved based on a con-
dition that the nonlinear term is an increasing Lipschitz continuous function of the
unknown function. A simple iterative scheme is used to deal with the nonlinear in-
tegral term. We proved the existence, uniqueness and convergence of the weak solu-
tion sequence for continuous level of the simple iterative scheme. A commonly used
assumption for approximate space, sometimes called inverse assumption, is proved.
Optimal order error estimates in L2 and H1 norms are proved for the linear and semi-
linear elliptic problems. In the actual numerical calculation, the characteristic distance
h does not appear explicitly in the parameter β introduced by the Nitsche method. The
theoretical results are confirmed numerically.
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1 Introduction

Numerical methods are requisite and useful for the study of semilinear partial differen-
tial equations (PDEs) [1]. The nonlinearity of the semilinear problems only involves the
unknown function, not its derivative. Many works have been devoted to the numerical
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solutions of semilinear elliptic problems such as finite element method (FEM) [2, 3], fi-
nite difference method [4], finite volume element method [5] and discontinuous Galerkin
method [6]. Recently, some collocation meshless (or meshfree) methods [7, 8], Galerkin-
type meshless method [8] and generalized finite difference method [9, 10] have been de-
veloped to solve the semilinear PDEs. Unlike mesh-based numerical methods, the shape
functions used in the meshless methods [11–14] are linkage with nodes (or particles) scat-
tered in the underlying computational domain, which reduces the dependence on the
mesh. The meshless methods have greatly developed in the last three decades.

The element-free Galerkin (EFG) [14] method is a global Galerkin-type meshless dis-
cretization technique for PDEs. The EFG shape functions are derived from the moving
least-squares (MLS) approximation [15]. The difficulty with the imposition of essential
(or Dirichlet) boundary conditions stems from the fact that the MLS shape functions are
not interpolating. That is, the shape function associated with a node does not vanish
at other nodes. Recently, some variants of the MLS approximation have been devel-
oped to regain interpolating properties, e.g., interpolating MLS method [15], simplified
interpolating MLS method [18, 19], and improved interpolating MLS method [20], and
smoothed MLS approximation [21]. On the other hand, the EFG method have been de-
veloped for solving solute transport problems [22], tumor growth model [23] and heat
transport equation [24], as well as some nonlinear models, such as magnetohydrodynam-
ics(MHD) [25] and Korteweg-de Vries-Rosenau-regularized long-wave equations [26].

In addition to adopting the interpolating shape functions, some mandatory methods,
such as the Lagrange multiplier method [12–14], the penalty method [12,13,16,17,27,28]
and Nitsche method [29–33, 35], can straightforwardly use the non-interpolating shape
functions by modifying the original weak form. The Nitsche method was first introduced
in early 70’s in FEM context [29]. This approach seems to be more promising because of its
ease of implementation, its smaller parameter-value compared with the penalty method,
its maintenance in terms of the number of unknown variables and the symmetry positive
definiteness of the resulting system. Therefore, the Nitsche method is seen as a consistent
improvement of the penalty method [31], and these potential advantages bring some
conveniences for numerical analysis.

There are a few theoretical results in the Nitsche-based meshless method. In Ref. [32],
the approximation errors of the Galerkin meshless method for linear elliptic problem are
analyzed based on the nonsymmetric Nitsche method and an inverse assumption, and
the effect of the numerical integration are discussed. The error estimates combined with
the effect of numerical integration are also developed in [33, 34] based on the reproduc-
ing kernel gradient smoothing integration method. Using the Nitsche method, a fast
time discrete EFG method is analyzed for the fractional diffusion-wave equation [35].
In these currently reported works, however, the parameter β introduced by the Nitsche
method is empirical rather than rational, meanwhile, an unproven inverse assumption
is required in the Nitsche-based meshless numerical analysis. Moreover, the analysis
presented in [32, 33, 35] addresses only the linear PDEs.

A Nitsche-based element-free Galerkin method is presented in this paper for semi-


