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Embedding Inequalities for Barron-Type Spaces
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Abstract. An important problem in machine learning theory is to understand the approximation and general-
ization properties of two-layer neural networks in high dimensions. To this end, researchers have introduced
the Barron space Bs(Ω) and the spectral Barron space Fs(Ω), where the index s ∈ [0, ∞) indicates the smooth-
ness of functions within these spaces and Ω ⊂ Rd denotes the input domain. However, the precise relationship
between the two types of Barron spaces remains unclear. In this paper, we establish a continuous embedding
between them as implied by the following inequality: For any δ ∈ (0, 1), s ∈ N+ and f : Ω 7→ R, it holds that

δ‖ f ‖Fs−δ(Ω) .s ‖ f ‖Bs(Ω) .s ‖ f ‖Fs+1(Ω).

Importantly, the constants do not depend on the input dimension d, suggesting that the embedding is effective
in high dimensions. Moreover, we also show that the lower and upper bound are both tight.
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1 Introduction

A (scaled) two-layer neural network is given by

fm(x; θ) =
1

m

m

∑
j=1

ajσ
(
wT

j x + bj

)
, (1.1)

where σ : R 7→ R is a nonlinear activation function; aj, bj ∈R, wj ∈Rd, θ = {(aj, wj, bj)}
m
j=1,

m and d denote the network width and the input dimension, respectively. The extra scale
factor in (1.1) is introduced to facilitate our subsequent analysis and it does not change
the network’s approximation power. Additionally, throughout this paper, we assume the

input domain Ω ⊂ R
d to be compact and focus on the case of activation function ReLUs

with s ≥ 0
σ(z) = max(0, z)s.

The cases of s = 0 and s = 1 correspond to the Heaviside step function and vanilla ReLU
function, respectively. The case of s ≥ 2 has also found applications in solving PDEs
[11, 13, 26] and natural language processing [25].

*leiwu@math.pku.edu.cn

https://www.global-sci.com/jml Global Science Press



J. Mach. Learn., 2(4):259-270 260

Cybenko [5] showed that functions in C(Ω) can be approximated arbitrarily well by
two-layer neural networks with respect to the uniform metric. However, the approxima-
tion can be arbitrarily slow. Pinkus [21] expanded on this by showing that for functions

belonging in Ck(Ω), the approximation by two-layer neural networks can achieve a rate

of O(m−k/d). This rate, unfortunately, is subject to the curse of dimensionality since it
diminishes as d increases. These suggest that mere continuity and smoothness are not suf-
ficient to ensure an efficient approximation in high dimensions. Then it is natural to ask:
What kind of regularity can ensure the efficient approximation by two-layer neural net-
works? Before proceeding to review previous studies attempting to answer this question.
We need a dual norm for handling the compactness of input domain.

Definition 1.1 ([1]). Given a compact set Ω, we define ‖v‖Ω = supx∈Ω |vT x|.

We begin by considering the spectral Barron spaces [3, 22, 24, 26], which are defined as
follows.

Definition 1.2. Let Ω ⊂ Rd be a compact domain. For f : Ω 7→ R and s ≥ 0, define

‖ f‖Fs(Ω) = inf
fe|Ω= f

∫

Rd
(1 + ‖ξ‖Ω)s

∣∣ f̂e(ξ)
∣∣dξ,

where the infimum is taken over all extensions of f . Let

Fs(Ω) := { f : Ω 7→ R : ‖ f‖Fs(Ω) < ∞}.

Then, the spectral Barron space is defined as Fs(Ω) equipped with the ‖ · ‖Fs(Ω) norm.

In the above definition, we consider measure-valued Fourier transform as done in [1]. It
is worth noting that Definition 1.2 bears resemblance to the Fourier-based characterization
of Sobolev spaces, denoted as

‖ f‖2
Hs

=
∫

Rd
(1 + ‖ξ‖)s| f̂ (ξ)|2 dξ.

The major distinction lies in the fact that the moment in Definition 1.2 is calculated with

respect to | f̂ (ξ)| instead of | f̂ (ξ)|2.
It was proved in [26] that if ‖ f‖Fs(Ω) < ∞, then functions in Fs(Ω) can be approx-

imated by two-layer ReLUs−1 networks without suffering the curse of dimensionality.

Specifically, the approximation error obeys the Monte-Carlo error rate O(m−1/2), where
m denotes the network width. The special case of s = 1 was first considered in the pioneer
work of Barron [1]. Subsequently, the case of s = 2 was studied in [2, 12]. More recently,
the extension to general positive integer s was provided in [3, 22, 26].

The Fourier-based characterization, while explicit, is not necessarily tight as it may ex-
clude functions that can be effectively approximated by two-layer neural networks. [19,20]
considered similar characterizations based on Radon transform instead of Fourier trans-
form, which can yield a tight characterization for the case of d = 1. Moreover, [7,8] offered
a probabilistic generalization of Barron’s analysis [1]. In these studies, functions satisfying
the following expectation representation are taken into consideration:
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