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Abstract. In this paper, we extend a diagonalization-based parallel-in-time (PinT) algo-
rithm to the viscoelastic equation. The central difference method is used for spatial dis-
cretization, while for temporal discretization, we use the Crank-Nicolson scheme. Then
an all-at-once system collecting all the solutions at each time level is formed and solved
using a fixed point iteration preconditioned by an α-circulant matrix in parallel. Via
a rigorous analysis, we find that the spectral radius of the iteration matrix is uniformly
bounded by α/(1−α), independent of the model parameters (the damping coefficient
ǫ and the wave velocity

p
γ) and the discretization parameters (the time step τ and the

spatial mesh size h). Unlike the classical wave equation with Dirichlet boundary con-
dition where the upper bound α/(1−α) is very sharp, we find that the occurrence of
the damping term −ǫ∆yt , as well as the large final time T , leads to even faster conver-
gence of the algorithm, especially when α is not very small. We illustrate our theoretical
findings with several numerical examples.
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1. Introduction

In this paper, we consider the following viscoelastic equation:

yt t − ǫ∆yt − γ∆y = f , (x, t) ∈ Ω× J ,

y(x, t) = φ(x, t), (x, t) ∈ ∂Ω× J ,

y(x, 0) =ψ1(x), x ∈ Ω,

yt(x, 0) =ψ2(x), x ∈ Ω,

(1.1)
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where Ω ⊂ Rd (d = 1,2,3) is an open domain, J = (0, T ] is the time interval, ǫ ≥ 0 is the
damping coefficient and

p
γ is the wave velocity with γ > 0. The source function f , the

boundary function φ(x, t) and the initial functions ψ1(x) and ψ2(x) are all given. With-
out loss of generality, we assume that a homogeneous boundary condition is applied, i.e.
φ(x, t) = 0, to simplify the theoretical analysis.

Comparing with the classical wave equation, the viscoelastic equation uses a damping
term −ǫ∆yt to provide a more accurate model in many applications e.g. in the propagation
of vibration waves through viscoelastic media [26]. We refer the reader to [50] for more
applications in science and engineering. Recently, Gander et al. [14] numerically validated
that the viscoelastic damping −ǫ∆yt works much better than the first order damping term
−yt (which results in a telegrapher’s equation) for modeling the vibration of an elastic
string.

The well-posedness of the viscoelastic equation had been addressed a long time ago
[2, 39, 42]. However, like most PDEs in applications, it is very hard to find the analytical
solutions due to the complicated given data, or, the complex defining domain. As a result,
it is very essential to study the numerical methods for solving the viscoelastic equation.
In fact, all prevalent techniques for spatial discretization can be applied to the viscoelastic
equation. See, for example, [9,45] for finite element methods, [3,17,25,38] for mixed fi-
nite element methods, [20,54] for finite difference methods, [22,23] for generalized finite
difference methods (also known as finite volume element methods), [43] for discontinuous
Galerkin methods and [49] for weak Galerkin finite element methods. Recently, the mesh-
less methods also attract much attention in solving the viscoelastic equation (1.1), see for
instance [35,37].

However, most numerical methods for solving Eq. (1.1) are based on time stepping. For
example, the reader can refer to [30,53] for a Crank-Nicolson scheme, where an extrapo-
lation approach and a proper orthogonal decomposition technique are used to reduce the
degree of freedom. To speedup the computation, one can apply parallel computing tech-
nique at each time level due to the fact that the time discretization leads to a steady partial
differential equation. Amongst the various parallel computing methods, the domain de-
composition method attracts the most attention. The domain decomposition method origi-
nated from Schwarz’s seminal work [41] in 1870, and was developed in 1990 by Lions [28]
as a parallel solver, which finally leads to the optimized Schwarz methods — cf. [10] and
references therein. Other efficient domain decomposition methods include the restricted
additive Schwarz (RAS) method [47], the finite element tearing and interconnecting (FETI)
method [8], the balancing domain decomposition by constraints (BDDC) [6], etc. We refer
the reader to the monographs [7,47] for many other variants of the aforementioned meth-
ods in detail. An alternative to the domain decomposition method would be the multigrid
method, cf. for example [48]. Obviously, these methods can be straightforwardly applied
to the viscoelastic equation (1.1) after time discretization.

In order to use computing resources more efficiently, one can apply the parallel-in-time
(PinT) computation to further accelerate the solution of the viscoelastic equation (1.1). In
fact, Adey and Brebbia [1] proposed long ago to solve the viscoelastic equation in parallel in
the Laplace transformed plane by a finite element method, and then a least square colloca-


