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A PARALLEL ITERATIVE PROCEDURE FOR WEAK

GALERKIN METHODS FOR SECOND ORDER ELLIPTIC

PROBLEMS
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Abstract. A parallelizable iterative procedure based on domain decomposition is presented

and analyzed for weak Galerkin finite element methods for second order elliptic equations. The
convergence analysis is established for the decomposition of the domain into individual elements
associated to the weak Galerkin methods or into larger subdomains. A series of numerical tests

are illustrated to verify the theory developed in this paper.

Key words. Weak Galerkin, finite element methods, elliptic equation, parallelizable iterative,
domain decomposition.

1. Introduction

This paper is concerned with an iterative procedure related to domain decompo-
sition techniques based on the use of subdomains as small as individual elements for
weak Galerkin (WG) methods for second order elliptic equations in Rd(d = 2, 3).
For simplicity, we consider the second order elliptic problem with a Dirichlet bound-
ary condition

−∇ · (a∇u) + cu =f, in Ω ⊂ Rd,

u =g, on ∂Ω,
(1)

where d = 2, 3. Assume the coefficients a(x) and c(x) satisfy

0 < a0 ≤ a(x) ≤ a1 < ∞, 0 ≤ c(x) ≤ c1 < ∞,

and are sufficiently regular so that the existence and uniqueness of a solution of (1)
in Hs(Ω) hold true for some s > 1 for reasonable f and g. A weak formulation for
the model problem (1) reads as follows: Find u ∈ H1(Ω) such that u = g on ∂Ω,
satisfying

(2) (a∇u,∇v) + (cu, v) = (f, v) ∀v ∈ H1
0 (Ω).

The WG finite element method is emerging as a new and efficient numerical
method for solving partial differential equations (PDEs). The idea of WG method
was first proposed by Wang and Ye for solving second order elliptic equation-
s in 2011 [33]. This method was subsequently developed for various PDEs, see
[15, 16, 18, 19, 20, 31, 27, 30, 28, 26, 31, 33, 34, 17, 35, 36, 27, 29, 32]. Due to the
large size of the computational problem, it is necessary and crucial to design effi-
cient and parallelizable iterative algorithms for the WG scheme. There have been
some iterative algorithms designed for the WG methods along the line of domain
decompositions [23, 5, 22, 21, 14]. Our iterative procedure is motivated by Despres
[6] for a Helmholz problem and another Helmholz-like problem related to Maxwell’s
equations by Despres [7, 8]. It should be noted that the convergence in [6, 7, 8]
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were established for the differential problems in strong form where numerical results
were presented to validate the iterative procedures for the discrete case. Douglas
et al. [9] introduced a parallel iterative procedure for the second order partial d-
ifferential equations by using the mixed finite element methods. The goal of this
paper is to extend the result of Douglas into weak Galerkin finite element methods.
In particular, based on the features of weak Galerkin methods, the iterative pro-
cedure developed in this paper can be very naturally and easily implemented on a
massively parallel computer by assigning each subdomain to its own processor.

The paper is organized as follows. In Section 2, we briefly review the weak dif-
ferential operators and their discrete analogies. In Section 3, we describe the WG
method for the model problem (1). In Section 4, we introduce domain decompo-
sitions and derive a hybridized formulation for the WG method. In Section 5, we
present a parallel iterative procedure for the WG finite element method. In Section
6, we establish a convergence analysis for the parallel iterative scheme. Finally in
Section 7, we report several numerical results to verify our convergence theory.

2. Weak Differential Operators

The primary differential operator in the weak formulation (2) for the second
order elliptic problem (1) is the gradient operator ∇, for which a discrete weak
version has been introduced in [34]. For completeness, let us briefly review the
definition as follows.

Let T be a polygonal or polyhedral domain with boundary ∂T . A weak function
on T refers to v = {v0, vb} where v0 ∈ L2(T ) and vb ∈ L2(∂T ) represent the values
of v in the interior and on the boundary of T respectively. Note that vb may not
necessarily be the trace of v0 on ∂T . Denote by W (T ) the local space of weak
functions on T ; i.e.,

W (T ) = {v = {v0, vb} : v0 ∈ L2(T ), vb ∈ L2(∂T )}.

The weak gradient of v ∈ W (T ), denoted by∇wv, is defined as a linear functional
on [H1(T )]d such that

(∇wv,w)T = −(v0,∇ ·w)T + ⟨vb,w · n⟩∂T ∀w ∈ [H1(T )]d.

Denote by Pr(T ) the space of all polynomials on T with total degree r and/or
less. A discrete version of ∇wv for v ∈ W (T ), denoted by ∇w,r,T v, is defined as a
unique polynomial vector in [Pr(T )]

d satisfying

(3) (∇w,r,T v,w)T = −(v0,∇ ·w)T + ⟨vb,w · n⟩∂T , ∀w ∈ [Pr(T )]
d.

3. Weak Galerkin Algorithm

Let Th be a finite element partition of the domain Ω consisting of polygons or
polyhedra that are shape-regular [34]. Denote by Eh the set of all edges or flat faces
in Th and E0

h = Eh \ ∂Ω the set of all interior edges or flat faces. Denote by hT the
meshsize of T ∈ Th and h = maxT∈Th

hT the meshsize for the partition Th.
For any given integer k ≥ 1, denote by Wk(T ) the local discrete space of the

weak functions given by

(4) Wk(T ) = {{v0, vb} : v0 ∈ Pk(T ), vb ∈ Pk−1(e), e ⊂ ∂T}.

Patching the local discrete space Wk(T ) with a single value on the element interface
yields the global finite element space; i.e.,

Wh = {v = {v0, vb} : v|T ∈ Wk(T ), vb is single-valued on e ⊂ E0
h, T ∈ Th}.


