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Abstract. We prove the existence of multiple solutions of an elliptic equation with crit-
ical Sobolev growth and critical Hardy potential on compact Riemannian manifolds.
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1 Introduction

Let (M,g) be a compact Riemannian manifold of dimension n≥3 . For a fixed point p in
M, we define a function ρp on M as follows

ρp(x)=

{
distg(p,x), x∈B(p,δg),
δg, x∈M\B(p,δg),

(1.1)

where δg denotes the injectivity radius of M.
Let h and f be two regular functions on M. Consider on M\{p} the following Hardy-

Sobolev equation:

∆gu− h(x)
ρ2

p(x)
u= f (x)|u|2∗−2u, (E f ,h)

where ∆gu =−div(∇gu) is the Laplace-Beltrami operator and 2∗ = 2n
n−2 is the Sobolev

critical exponent.
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As one may notice, when dropping the singular term 1
ρ2

p(x) from equation (E f ,h) and

putting h= n−2
4(n−1)Scalg, where Scalg is the scalar curvature of (M,g), one falls in the cele-

brated prescribed scalar curvature equation whose origin comes from the study of confor-
mal deformation of the metric to prescribed scalar curvature. A smooth positive solution
u of the prescribed scalar curvature equation provides a conformal metric g′=u

4
n−2 g with

scalar curvature the function f ; when f is constant we fall n the famous Yamabe equa-
tion. The prescribed scalar curvature equation is largely studied and lot of results have
been obtained. For those interested, good comprehensive references may be the books [1]
and [2]. Equation (E f ,h) can be, then, seen as a singular prescribed scalar curvature equa-
tion.

The case where the function ρp, in equation (E f ,h), is of power 0<γ<2 and f ≡1, has
been studied in [3] and is related to the study of conformal deformation to constant scalar
curvature of metrics which are smooth only in some geodesic ball B(p,δ) (see [3,4]). Note
that the author in [3, 4] considers also equation (E f ,h), with f ≡1, and shows existence of
a solution on compact manifolds.

In this paper, we are interested in proving the existence of multiple solutions of equa-
tion (E f ,h). The tool used is a classical theorem from critical point theory (see Theo-
rem 4.2 below). Note that the main difficulty in applying this theorem lies in satisfy-
ing the compactness assumption under which the critical points exist. This difficulty is
due mainly to the presence of Sobolev exponent and Hardy potential. More explicitly,
presence of Sobolev exponent and Hardy potential renders non-compact the inclusions
H2

1(M)⊂L2∗ M and H2
1(M)⊂L(M,ρ−2

p ) (see Section 2 for definition of the notation). This
leads us to analyze compactness of Palais-Smale sequences which can be done by means
of of a Struwe type decomposition formulas of Palais-Smale sequences.

2 Notation, useful results and statement of the main result

In this section, we introduce some notation and results that are useful in our study.
We denote by D1,2(Rn),(n≥3), the Euclidean Sobolev space which is the closure space

of Co(Rn), the space of functions u with compact support in Rn, with respect to the norm

||u||D1,2(Rn)=

√∫
Rn

|∇u|2dx.

Let K(n,2) denote the best constant in the sharp Euclidean Sobolev inequality(∫
Rn

|u|2∗dx
) 1

2∗

≤K(n,2)
(∫

Rn
|∇u|2

) 1
2

.

The explicit value of K(n,2) has been obtained in [5] and [6] (see also [2, Theorem 5.3.1])

K(n,2)=

√
4

n(n−2)w2/n
n

,


