The 2D Boussinesq-Navier-Stokes Equations with Logarithmically Supercritical Dissipation

Durga Jang K.C.¹, Dipendra Regmi^{2,*}, Lizheng Tao³ and Jiahong Wu⁴

¹ Central Department of Mathematics, Tribhuvan University, Kathmandu, Nepal;

² Department of Mathematics, University of North Georgia, Oakwood, GA 30566, USA;

³ Department of Mathematics, Oklahoma State University, Stillwater, OK 74078, USA;

⁴ Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556, USA.

Received August 12, 2023; Accepted November 1, 2023; Published online March 21, 2024.

Abstract. We study the global well-posedness of the initial-value problem for the 2D Boussinesq-Navier-Stokes equations with dissipation given by an operator \mathcal{L} that can be defined through both an integral kernel and a Fourier multiplier. When the operator \mathcal{L} is represented by $\frac{|\xi|}{a(|\xi|)}$ with *a* satisfying $\lim_{|\xi|\to\infty} \frac{a(|\xi|)}{|\xi|^{\sigma}} = 0$ for any $\sigma > 0$, we obtain the global well-posedness. A special consequence is the global well-posedness of 2D Boussinesq-Navier-Stokes equations when the dissipation is logarithmically supercritical.

AMS subject classifications: 35Q35, 35B35, 35B65, 76D03 **Key words**: Supercritical Boussinesq-Navier-Stokes equations, global regularity.

1 Introduction

In this paper, we focused on the initial-value problem (IVP) for the Boussinseq-Navier-Stokes equations with dissipation given by a general integral operator,

$$\begin{cases} \partial_t u + u \cdot \nabla u + \mathcal{L}u = -\nabla p + \theta \mathbf{e}_2, \\ \partial_t \theta + u \cdot \nabla \theta = 0, \\ \nabla \cdot u = 0, \\ u(x,0) = u_0(x), \quad \theta(x,0) = \theta_0(x), \end{cases}$$
(1.1)

^{*}Corresponding author. *Email addresses:* durgajkc@gmail.com (KC D), dipendra.regmi@ung.edu (Regmi D), ltao@math.okstate.edu (Tao L), jwu29@nd.edu (Wu J)

where $u: \mathbb{R}^2 \to \mathbb{R}^2$ is a vector field denoting the velocity, $\theta: \mathbb{R}^2 \to \mathbb{R}$ is a scalar function, \mathbf{e}_2 is the unit vector in the x_2 direction, and \mathcal{L} is a nonlocal dissipation operator defined by

$$\mathcal{L}f(x) = \text{p.v.} \ \int_{\mathbb{R}^2} \frac{f(x) - f(y)}{|x - y|^2} m(|x - y|) dy$$
(1.2)

and $m: (0,\infty) \rightarrow (0,\infty)$ is a smooth, positive, non-increasing function, which obeys

(i) there exists $C_1 > 0$ such that

$$rm(r) \leq C_1$$
 for all $r \leq 1$;

(ii) there exists $C_2 > 0$ such that

$$r|m'(r)| \leq C_2 m(r)$$
 for all $r > 0$;

(iii) there exists $\beta > 0$ such that

 $r^{\beta}m(r)$ is non-increasing.

This type of dissipation operator was introduced by Dabkowski, Kiselev, Silvestre and Vicol when they study the well-posedness of slightly supercritical active scalar equations [13]. As pointed out in [13], \mathcal{L} can be equivalently defined by a Fourier multiplier, namely

$$\widehat{\mathcal{L}}\widehat{f}(\xi) = P(|\xi|)\widehat{f}(\xi)$$
(1.3)

for $P(|\xi|) = m(\frac{1}{|\xi|})$ when $P(\xi)$ satisfies the following conditions:

1. *P* satisfies the doubling condition: for any $\xi \in \mathbb{R}^2$,

$$P(2|\xi|) \leq c_D P(|\xi|)$$

with constant $c_D \ge 1$;

2. *P* satisfies the Hormander-Mikhlin condition (see [33]): for any $\xi \in \mathbb{R}^2$,

$$\xi|^{|k|} |\partial_{\xi}^{k} P(|\xi|)| \leq c_{H} P(|\xi|)$$

for some constant $c_H \ge 1$, and for all multi-indices $k \in \mathbb{Z}^d$ with $|k| \le N$, with N only depending on c_D ;

3. *P* has sub-quadratic growth at ∞ , i.e.

$$\int_0^1 P(|\xi|^{-1})|\xi|d|\xi| < \infty$$