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Abstract

An essential feature of the subdiffusion equations with the α-order time fractional

derivative is the weak singularity at the initial time. The weak regularity of the solution

is usually characterized by a regularity parameter σ ∈ (0, 1) ∪ (1, 2). Under this general

regularity assumption, we present a rigorous analysis for the truncation errors and develop

a new tool to obtain the stability results, i.e., a refined discrete fractional-type Grönwall

inequality (DFGI). After that, we obtain the pointwise-in-time error estimate of the widely

used L1 scheme for nonlinear subdiffusion equations. The present results fill the gap on

some interesting convergence results of L1 scheme on σ ∈ (0, α)∪ (α, 1)∪ (1, 2]. Numerical

experiments are provided to demonstrate the effectiveness of our theoretical analysis.
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1. Introduction

In this paper, we consider sharp pointwise-in-time error estimate of L1 scheme in time for

solving the following nonlinear subdiffusion equations:

∂α
t u−∆u = f(u), x ∈ Ω× (0, T ] (1.1)

with the initial and boundary conditions

u(x, 0) = u0(x), x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω× [0, T ],
(1.2)

where Ω = (0, L)d ⊂ R
d (d ≥ 1). The time fractional Caputo derivative is defined as

∂α
t u(x, t) =

1

Γ(1− α)

∫ t

0

∂u(x, s)

∂s

1

(t− s)α
ds, 0 < α < 1. (1.3)
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Here Γ(·) denotes the Gamma function. The equations provide a useful tool to describe anoma-

lous diffusion in different physical situations, see, e.g., [4, 5, 21]. Hence, the theoretical and

numerical analysis of the models have attracted the interest of plenty of researchers.

In developing numerical methods for solving the subdiffusion problem (1.1), an important

consideration is that the solution u is typically less regular than in the case of a classical

parabolic PDE (as the limiting case α → 1). For instance, Jin et al. [10] show that if the initial

condition u0 ∈ H1
0 (Ω) ∩H2(Ω), the solution to problem (1.1) satisfies ‖∂tu(t)‖L2(Ω) ≤ Ctα−1.

Maskari and Karaa [23] obtain that if u0 ∈ Ḣν(Ω) with ν ∈ (0, 2], the solution of problem (1.1)

satisfies ‖∂tu(t)‖L2(Ω) ≤ Ctνα/2−1, which implies that there exists a parameter σ ∈ (0, α] and

ut → ∞ as t → 0+. One can refer to more works [1, 6, 12, 17, 18, 24, 25] on the discussion of the

regularity of solutions. Without loss of generality, we assume the solution regularity satisfies

‖∂m
t u‖L2(Ω) ≤ Ctσ−m for m = 1, 2, σ ∈ (0, 1) ∪ (1, 2]. (1.4)

Under the regularity assumption σ = α in (1.4), many works indicate that the convergence

order with the maximum norm in time is O(τα), where τ is the temporal stepsize. One can

refer to [11,14,19,20,28] for the L1 and L2-type schemes on the uniform meshes, [10,22] for the

convolution quadrature (CQ) Euler method and [8, 10] for the CQ BDF methods. In addition,

numerical simulations show an interesting phenomenon that the convergence order of the L1

scheme on the uniform meshes is O(τα) as t tends to 0, and O(τ) at the final time t = T .

It motivates much works to consider the pointwise error estimate. For linear subdiffusion

equations (i.e., f(u) = 0), Gracia et al. [3] proved the temporal error of L1 scheme on the

uniform meshes is of τtα−1
n . Yan et al. [29] considered time-stepping error estimates of the

modified L1 scheme. Jin et al. [7] showed if the initial condition u0(x) ∈ L2(Ω), the temporal

error of L1 scheme on the uniform meshes is of τt−1
n . After that, they [9] further obtained time-

stepping error estimates of some high-order BDF convolution quadrature methods. Mustapha

and McLean [26,27] investigated time-stepping error bounds of discontinuous Galerkin methods

for fractional diffusion problems.

For the nonlinear subdiffusion equations (1.1), Maskari and Karaa [23] studied the optimal

pointwise-in-time error estimates based on the CQ Euler method. Kopteva [13] presented the

pointwise-in-time error estimate of L1 scheme on the quasi-uniform temporal meshes for σ = α

under appropriate conditions on the nonlinearity. The imposed conditions on the nonlinearity

can guarantee the exact solutions have the upper and lower bounds, and a method of upper and

lower solutions is introduced to address that the numerical solutions lie within a certain range

similar to the exact solutions. Recently, the discrete fractional-type Grönwall inequality (DFGI)

has received much attention and is well-studied, such as L1 scheme and a class of widely used

schemes with fast algorithms [16, 19, 20] on nonuniform time steps, a general criteria [10] for

L1 scheme and convolution quadrature generated by backward difference formulas on uniform

time steps, and a Grüwald-Letnikov scheme [2, 30] on uniform time steps. As far as we know,

these DFGIs have successfully proved the maximum error estimate, but cannot produce the

pointwise error estimate.

The aims of this paper are to establish a refined DFGI, which is suitable to obtain the

sharp pointwise error estimate of L1 scheme for problem (1.1) by taking the weak regularity

of solutions into account. A fully discrete scheme is constructed by combining with the finite

difference method for the spatial discretization, and a Newton linearized method for the nonlin-

ear terms. Comparing with the stability analysis of continuous equations, the discrete integral

kernel generally does not hold the semi-group property. It is the main reason why it is so dif-


