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Abstract

Du Fort-Frankel finite difference method (FDM) was firstly proposed for linear diffu-

sion equations with periodic boundary conditions by Du Fort and Frankel in 1953. It is

an explicit and unconditionally von Neumann stable scheme. However, there has been no

research work on numerical solutions of nonlinear Schrödinger equations with wave operator

by using Du Fort-Frankel-type finite difference methods (FDMs). In this study, a class of

invariants-preserving Du Fort-Frankel-type FDMs are firstly proposed for one-dimensional

(1D) and two-dimensional (2D) nonlinear Schrödinger equations with wave operator. By

using the discrete energy method, it is shown that their solutions possess the discrete energy

and mass conservative laws, and conditionally converge to exact solutions with an order of

O(τ 2+h2
x +(τ/hx)

2) for 1D problem and an order of O(τ 2+h2
x+h2

y +(τ/hx)
2+(τ/hy)

2)

for 2D problem in H1-norm. Here, τ denotes time-step size, while, hx and hy represent

spatial meshsizes in x- and y-directions, respectively. Then, by introducing a stabilized

term, a type of stabilized invariants-preserving Du Fort-Frankel-type FDMs are devised.

They not only preserve the discrete energies and masses, but also own much better stability

than original schemes. Finally, numerical results demonstrate the theoretical analyses.
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1. Introduction

The nonlinear Schrödinger equations have been extensively applied in various mathematical

and physical fields, such as, plasma physics, nonlinear optics and bimolecular dynamics. A non-

linear Schrödinger equation with wave operator, which was firstly proposed by Matsuuchi [31],

was used to describe the nonlinear interactions between two waves travelling in opposite direc-

tions. In [14], the author studied the existence and uniqueness of the weak and strong solutions

of the nonlinear Schrödinger equations with wave operator by means of Galerkin method, the

regularity of the solutions, and the existence of the smooth solutions of 1D nonlinear Schrödinger

equations with wave operator under weaker assumption. In [15], the author has devoted to re-

searching the existence and nonexistence for this equation in the case of possessing different

signs in nonlinear term under some conditions.
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In this paper, we consider the numerical solutions of the initial-boundary value problem for

the nonlinear Schrödinger equations with wave operator as follows:

utt −∆u+ iut + |u|2u+ f(x)u = 0, x ∈ Ω, t ∈ (0, T ), (1.1a)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (1.1b)

u(x, t) = 0, x ∈ ∂Ω, t ∈ [0, T ], (1.1c)

by using invariants-preserving Du Fort-Frankel-type FDMs. Here u(x, t) and f(x) are an un-

known complex function and a given real-valued function, respectively, i =
√
−1. For 1D case,

we set Ω = (Xl, Xr) and denote x = x. For 2D case, we write Ω = (Xl, Xr) × (Yl, Yr) and

x = (x, y). The conjugate complex number of u is denoted by u.

Proposition 1.1 ([19, 32, 35]). Let the mass and energy conservative laws for the problem

(1.1a)-(1.1c) be defined as follows:

Q(t) = 2Im〈ut, u〉+ ‖u‖2 + c, (1.2a)

E(t) = ‖ut‖2L2 + |u|2H1 +
1

2
‖u‖4L4 + 〈f, |u|2〉+ c, (1.2b)

respectively. Then we have that Q(t) = Q(0) and E(t) = E(0). Here c is an arbitrary constant.

Proof. Acting the inner product of (1.1a) with 2u, taking the imaginary part, applying

Green formula and noting homogeneous Dirichlet boundary conditions, we obtain

Im〈utt, 2u〉+Re〈ut, 2u〉 = 0. (1.3)

Besides, by simple computation, we have

d

dt
(utu) = uttu+ utut,

which shows that
d

dt

[
Im(2utu)

]
= Im(2uttu). (1.4)

Furthermore, by simple computation, we obtain

d

dt
(uu) = utu+ uut = 2Re(utu). (1.5)

Applying (1.4) and (1.5) to (1.3) shows that

d

dt
Q(t) = 0, Q(t) = Q(0). (1.6)

Acting the inner product of (1.1a) with 2ut, applying the Green formula and noting homo-

geneous Dirichlet boundary conditions, taking the real part, using (1.5) and

d

dt
(|ut|2) = 2Re(uttut), −2Re〈∆u, 2ut〉 =

d

dt
|u|2H1 ,

d

dt

(
1

2
|u|4
)

= 2|u|2Re(uut), (1.7)


