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AN EXPERIMENTAL STUDY OF SEVERAL

MULTIDIMENSIONAL, LOCALLY CONSERVATIVE,

EULERIAN-LAGRANGIAN FINITE ELEMENT METHODS FOR

A SEMILINEAR PARABOLIC EQUATION

SON-YOUNG YI AND JIM DOUGLAS, JR.

Abstract. This paper is an experimental continuation of [7], where we presented one realization
of a locally-conservative Eulerian-Lagrangian finite element method (LCELM) for a semilinear
parabolic equation and proved an optimal convergence rate. In this paper, we present two higher-
order extensions of the method of [7], along with one lower-order procedure. We show some
numerical results to illustrate the accuracy and efficiency of the LCELM procedures. Optimal
convergence rates for each method will be presented.
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1. Introduction.

A large number of physical problems of significant interest are described by
convection-dominated diffusive systems. Such problems occur in multiphase and
multicomponent flows in porous media coming from petroleum and environmental
engineering, aerodynamics, and the modeling of semiconductor devices. It has been
recognized for several decades that standard finite difference and finite element
methods often lead to inaccurate approximations of the underlying phenomena. In
response to this, a variety of numerical techniques have been introduced, with many
classified as Eulerian-Lagrangian methods, in which an Eulerian finite difference or
finite element treatment of diffusion is combined with a Lagrangian treatment of
convection. Some methods fail to conserve the material or mass in the system, and
others may preserve mass globally (in space) at all time levels but not locally in
space. There are, however, a number of very important physical problems for which
local conservation is essential. In order to achieve this local conservation of mass,
a method called the Locally Conservative Eulerian-Lagrangian Method (LCELM)
was introduced for the problem of two-phase, immiscible, incompressible flow in
porous media [5]. A reasonably extensive set of computational experiments were
presented to validate the new method and to show that it produces a more detailed
picture of the local behavior in waterflooding a fractally heterogeneous medium. A
convergence analysis has been given for the LCELM as it relates to a single space
variable semilinear parabolic problem [4]. More recently, in [7], we presented one
realization of the LCELM as applied to a scalar semilinear parabolic problem in two
space variables and proved it to be convergent at an optimal rate as the spatial and
temporal discretizations are refined. The main object here is to consider several
higher-order extensions of the method of [7], along with one lower-order procedure;
No formal convergence proofs have been obtained for these methods, but we shall
present computations to indicate that these procedures do lead to optimal order
convergence.
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The rest of the paper is organized as follows: in Section 2, we describe a semi-
linear parabolic equation that is of interest in this paper and operator splitting
procedures that the LCELM is based on. Section 3 introduces the lowest-order
version of the LCELM and its post-processed version that employ the lowest-order
Raviart-Thomas space. In Section 4, we describe two higher-order extensions of the
post-post processed version of the method. One employs the Brezzi-Douglas-Fortin-
Marini space of index 2 to achieve second-order accuracy in space. Another is a
Crank-Nicolson version of the method. Finally, in Section 5 we conduct numerical
experiments to observe the convergence behavior and mass conservation property
of each version of LCELM and compare the LCELM with the original modified
method of characteristics (MMOC) [6].

2. A Locally Conservative Eulerian-Lagrangian Method

We shall treat the same differential problem (1) as in [7]. Let Ω be a bound-
ed domain in R2 and consider the following initial-boundary value problem for a
semilinear parabolic equation:

∇t,x ·
(

s(x, t)

f(s)u(x, t)

)
−∇x · (d(x)∇xs) = g(x, t), x ∈ Ω, t ∈ (0, T ],(1a)

(f(s)u(x, t) − d(x)∇xs) · n = 0, x ∈ ∂Ω,(1b)

s(x, 0) = s0(x), x ∈ Ω,(1c)

where u is known and satisfies the equation

(1d) ∇x · u(x, t) = b(x, t), t > 0.

LetNx, Ny, andNt be positive integers. We define a uniform space-time partition
on Ω× [0, T ] by

xi1 = i1∆x, i1 = 0, 1, · · · , Nx, ∆x = 1/Nx,

yi2 = i2∆y, i2 = 0, 1, · · · , Ny, ∆y = 1/Ny,

tn = n∆t, n = 0, 1, · · · , Nt, ∆t = T/Nt,

and let h = max{∆x,∆y}.
The locally conservative, Eulerian-Lagrangian methods considered herein are

based on the following operator-splitting procedure to separate transport from dif-
fusion:

1◦ Initialize:

(2a) S0(x) = s0(x), x ∈ Ω.

2◦ Transport: for 1 ≤ n ≤ Nt and t
n−1 < t ≤ tn,

∇t,x ·
(

S

f(S)u

)
= g,(2b)

S(x, tn−1) = Sn−1(x).(2c)

3◦ Diffusion: for 1 ≤ n ≤ Nt and t
n−1 < t ≤ tn,

∂Ŝ

∂t
−∇x · (d∇xŜ) = 0,(2d)

Ŝ(x, tn−1) = S(x, tn).(2e)


