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Abstract. The two-level penalty finite element methods for Navier-Stokes equations with non-
linear slip boundary conditions are investigated in this paper, whose variational formulation is
the Navier-Stokes type variational inequality problem of the second kind. The basic idea is to
solve the Navier-Stokes type variational inequality problem on a coarse mesh with mesh size H in
combining with solving a Stokes type variational inequality problem for simple iteration or solving
a Oseen type variational inequality problem for Oseen iteration on a fine mesh with mesh size h.
The error estimate obtained in this paper shows that if H = O(h5/9), then the two-level penalty
methods have the same convergence orders as the usual one-level penalty finite element method,
which is only solving a large Navier-Stokes type variational inequality problem on the fine mesh.
Hence, our methods can save a amount of computational work.
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1. Introduction

Constructing efficient algorithms for solving Navier-Stokes equations is a fun-
damental and important problem. A difficulty lies in that the velocity and the
pressure are coupled by the solenoidal condition. The popular technique to over-
come this difficulty is relaxing the solenoidal condition in an appropriate method
and resulting in a pesudo-compressible system, such as the penalty method intro-
duced by Temam in [1,2], the locally stabilized methods introduced by Kechkar in
[3], the pressure projection stabilized methods introduced by Bochev in [4] and Li
in [5] and the references cited therein.

The other difficulty is that the Navier-Stokes equations are nonlinear. The two-
level method is a very popular technique for solving the numerical solutions of the
nonlinear equations. Its main idea is to solve a nonlinear problem on a coarse mesh
and solving a linear problem on a fine mesh, which saves computational work for
solving a nonlinear problem. There are a large amount of papers about the two-level
method, such as for nonlinear partial differential equations [6-11] and especially for
Navier-Stokes equations with homogeneous Dirichlet boundary conditions [12-21].

In this paper, we will consider the two-level penalty finite element methods
for Navier-Stokes equations with nonlinear slip boundary conditions. Since the
nonlinear boundary conditions are from the subdifferential property on the part
boundary, the weak variational formulation is the variational inequality problem of
the second kind with Navier-Stokes operator which is called the Navier-Stokes type
variational inequality problem. This nonlinear slip boundary conditions are firstly
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introduced by Fujita in [22] and appear in the modeling of blood flow in a vein of
an arterial sclerosis patient. The approach consists solving the Navier-Stokes type
variational inequality problem on a coarse mesh with mesh size H in combining
with solving a Stokes type variational inequality problem for simple iteration or
solving a Oseen type variational inequality problem for Oseen iteration on a fine
mesh with mesh size h. Denote uεh and pεh the penalty approximation solutions
on the fine mesh. The error estimate derived in this paper is

||u− uεh||V + ||p− pεh|| ≤ c(ε+ h5/4 +H9/4),

where c > 0 is independent of h and H . This error estimate shows that if H =
O(h5/9) and ε is sufficiently small, the two-level penalty finite element methods
have the same convergence orders as the usual one-level penalty finite element
methods studied in [23]. Hence, our methods can save the CPU time and improve
the computational efficiency.

2. Navier-Stokes Equations with Nonlinear Slip Boundary Conditions

Let ψ : R2 → R = (−∞,+∞] be a given function possessing the properties of
convexity and weak semi-continuity from below (ψ is not identical with +∞). The
subdifferential set ∂ψ(a) denotes a subdifferential of the function ψ at the point a:

∂ψ(a) = {b ∈ R
2 : ψ(t)− ψ(a) ≥ b · (t− a), ∀ t ∈ R

2}.

Consider the steady Navier-Stokes equations

(1)

{
−µ∆u+ (u · ∇)u+∇p = f in Ω,
divu = 0 in Ω

with the following nonlinear slip boundary conditions [22]:

(2)

{
u = 0, on Γ,
un = 0, −στ (u) ∈ g∂|uτ | on S,

where Ω ⊂ R
2, is a bounded convex domain. Γ ∩ S = ∅,Γ ∪ S = ∂Ω. The viscous

coefficient µ > 0 is a positive constant. g is the scalar functions; un = u · n and
uτ = u − unn are the normal and tangential components of the velocity, where n
stands for the unit vector of the external normal to S; στ (u) = σ−σnn, independent
of p, is the tangential component of the stress vector σ which is defined by σi =

σi(u, p) = (µeij(u) − pδij)nj , where eij(u) = ∂ui

∂xj
+

∂uj

∂xi
, i, j = 1, 2. From the

definition of the subdifferential property, we note that the variational formulation
of (1)-(2) is the variational inequality problem of the second kind with Navier-Stokes
operator.

To give the variational formulation, we introduce some spaces which we will need
later in this paper. Denote

V = {u ∈ H1(Ω)2, u|Γ = 0, u · n|S = 0}, V0 = H1
0 (Ω)

2,

Vσ = {u ∈ V, divu = 0}, M = L2
0(Ω) = {q ∈ L2(Ω),

∫

Ω

qdx = 0}.

Let || · ||k be the norm in Hilbert space Hk(Ω)2. Let (·, ·) and || · || be the inner
product and the norm in L2(Ω)2. Then we can define the inner product and the
norm in V by (∇·,∇·) and || · ||V = ||∇ · ||, respectively, because ||∇ · || is equivalent
to || · ||1. Let X be a Banach space. Denote X

′ the dual space of X and < ·, · > be
the dual pairing in X× X

′.


