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Abstract This paper is concerned with the existence and attractivity of the sta-
~ tionary solutions of a degenerate diffusion equation. By using monotone method and

applying some special techniques, we extend the-results in 1-dimension case to higher
dimension cases. :
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1. Introduction

We want to investigate the following boundary value problem:

{ A(u™) - afle])w? =0, z € R"

w >0, u of compact support

(1.1)

where m > 1, n > 1, p > 1 and m > p. As for a, the following properties will be
assumed.

(A.1) a(r) € C{[0,00)) and a'(r) > 0 for any = £ (0,00},

(A.2) there exists a > 0 such that (» — a)a(r) > 0 for any r € [0, co).

The initial value problem corresponding to (1.1) is the following Cauchy problem:

{ u = Au™) - af|z|)u?, (¢,7) €.(0,00) x B (1.2)

% = ug(z), (t,z) € {0} x R"

We shall always consider ug > 0, and uy € L™(R") with compact support.

Problems (1.1) and (1.2) were proposed as a model of mathematical population
dynamics!!)2l, The existence of solutions both for (1.2) and for the Dirichlet initial
boundary value problems was proved in [9]. The uniqueness of nontrivial solutions of
(1.1) was proved in [4].
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In this paper, we consider the existence of nontrivial radial solutions of (1.1). For
this purpose we investigate the problem:

i _1
y-l-n ¥ —a(r)y® =0, reR,

F (1.3)
y(0)=n, ¥(0)=0

wherenp > 0,3 = i € (0,1), and a satisfies (A.1) and (A.2). Only classical nonnegative
solutions of (1.3) will be considered.

For n = 1, problems (1.1}—(1.3) were investigated in [b], in which a complete de-
scription of the set of stationary solutions — as well as their attractivity properties —
both for Cauchy problem (1.2) and for the Dirichlet or Neumann initial boundary value *
problems was given.

In this paper, we prove the existence and attractivity of solutions for (1.1) in higher
dimension cases — as well as the existence of nontrivial radial solutions both for the
Dirichlet and Neumann boundary value problems. We extends the results of [5] to
higher dimension cases. It is worth mentioning that for n = 1 the attractivity holds in
L®-norms/®®] while for n > 1 the attractivity holds in L%norm for any 1 < g < oc.
(see also [12]).

Due to the singularity appeared in (1.3), the methods used in [5| are not valid for
n > 1. In this paper, the methods for the existence proof are sub-supper solutions
method and a special maximum principle as well as some special techniques. The
attractivity results are also obtained by sub-supper solutions method (see also [12]).
The very structure of sub-supper solutions makes some proofs easier than those in [5].

This paper is organized as follows: in Section 2 we give some basic lemmas, Section
3 is concerned with the initial value problem (1.3), in Section 4 the existence and
attractivity of stationary solutions is obtained. |

2. Basic Lemmas

Consider the initial value problem for radial equation:

{ (P (e + 7" flu(r),r) =0, re Ry (2.1)

u(0) =d = 0, u(0) =10

Lemma 2.18  Assume that n > 1 and that f: (0,00) x [0,00) = R is C'. For
each d > 0 there erists a unigue positive C? solution u(r) = u(r,d) of (2.1). The
function u(r) is defined on a mazimal interval [0, ry4) and u is C* in the r variable and
! in the d variable.

Lemma 2.2!!! (Maximum Principle) If u(z) satisfies the differential inequa-
lety: . .
(L+h)u] =" + glz)u' + h(z)u >0 (2.2)




