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Abstract. This paper deals with the solvability and the convergence of a class of un-
symmetric Meshless Local Petrov-Galerkin (MLPG) method with radial basis function
(RBF) kernels generated trial spaces. Local weak-form testings are done with step-
functions. It is proved that subject to sufficiently many appropriate testings, solvabil-
ity of the unsymmetric RBF-MLPG resultant systems can be guaranteed. Moreover, an
error analysis shows that this numerical approximation converges at the same rate as
found in RBF interpolation. Numerical results (in double precision) give good agree-
ment with the provided theory.
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1 Introduction

In recent years, there is a rapid growth in research of different variants of meshless
methods. Generally speaking, meshless methods for solving partial differential equa-
tions (PDEs) can be classified into two groups: one uses the strong-form collocation
while another group uses the weak formulation for testing the PDEs. The meshless lo-
cal Petrov-Galerkin method (MLPG), which was first proposed by Atluri and colleagues
in 1998 [1, 2], belongs to the latter group. Since then, the MLPG method has been suc-
cessfully applied to solve a wide range of problems in engineering and science; see also
references [3–6] therein. To see some general properties of the unsymmetric meshless
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kernel based methods see [7]. For a brief introduction to the original MLPG method, let
us consider a PDE in the form of:

Lu= f in Ω, and u= g on ∂Ω, (1.1)

where ∂Ω denotes the boundary of the bounded domain Ω in R
d. Both given functions

f and g : R
d →R are sufficiently smooth. For any set of N scattered nodal points in the

domain and on the boundary represented by Ξ = {ξk}N
k=1. The unknown solution u is

approximated via
u(x)≈uN(x)= ∑

ξ i∈Ξ

λiΦi(x), (1.2)

where Φi(x), i=1,2,··· ,N are called shape functions constructed on the set of nodal points
Ξ and λi is the unknown coefficient at node i to be determined. For certain shape func-
tions, e.g., the moving least-squares basis [8–10], we have weights λi ≈ u(xi) approxi-
mating the solution values. To solve for the N unknowns λ1,··· ,λN , the ”local” weak
equations constructed on subdomains surrounding each node are as follows:

∫

Ω
si

(Lu)vdx=
∫

Ω
si

f vdx⇒
N

∑
j=1

(

∫

Ω
si

LΦj(x)vdx
)

λj =
∫

Ω
si

f vdx. (1.3)

This yields N equations for the N unknown coefficients. In (1.3), Ωsi denotes a (relatively
small) subdomain in Ω surrounding the node xi and v is a locally supported test function.
Employing different test functions v results in different kinds of MLPG methods; see [1,
2]. One possible class of the test functions, that is of our interest in this work, is the
step functions. In this paper, we study the solvability and convergence of an MLPG
method using radial basis functions (RBF) as shape functions [11–13] and step functions
as test functions. Some numerical demonstrations are given to show the exponential
convergence (under double-precision computations) of the RBF-MLPG method.

2 Sufficient condition for solvability

In the original MLPG method, the sets of test and trial nodes are identical. Such linkage
between these two sets of nodes will be decoupled in the RBF-MLPG method due to the
requirement for solvability given in this section. Moreover, we use more test equations
(denoted by M) than the number of basis in expansion (denoted by N) to yield overde-
termined MLPG systems.

We assume that the differential equation (1.1) has an exact solution u∗ lying in some
infinite dimensional trial spaces U . To obtain a numerical procedure, we first discretize
the trial space U by some finite dimensional subspaces UN generated by a set RBF kernel
Φ centered at a set of N scattered nodes (or RBF centers) ΞN := {ξ i}N

1 . Any numerical
approximations are of the form

uN(x)= ∑
ξi∈Ξ

λiΦ(x,ξi)∈UN :=
{

v : v(x)= ∑
ξ i∈Ξ

λiΦ(x,ξ i), λ∈R
N
}

,


