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A FRONT-FIXING FINITE ELEMENT METHOD FOR

THE VALUATION OF AMERICAN PUT OPTIONS

ON ZERO-COUPON BONDS

ANTHONY D. HOLMES AND HONGTAO YANG

Abstract. A front-fixing finite element method is developed for the valua-

tion of American put options on zero-coupon bonds under a class of one-factor

models of short interest rates. Numerical results are presented to examine our

method and to compare it with the usual finite element method. A conjec-

ture concerning the behavior of the early exercise boundary near the option

expiration date is proposed according to the numerical results.
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1. Introduction

Consider a class of one-factor models of the short interest rate process:

(1.1) r(t) = ζ(X(t)), dX(t) = (φ(t) − ψ(t)X(t))dt+ σ(t)dW (t),

where ζ(x) is an invertible function on (−∞,+∞), φ(t), ψ(t) and σ(t) are some
known functions of t, and W (t) is a standard Brownian motion under the risk-
neutral measure. For ζ(x) = x and ζ(x) = ex, we have the popular Hull-White
model ([7]) and Black and Karasinski model ([4]), respectively.

Let x = η(r) be the inverse function of r = ζ(x). Assume that ζ(x) is twice
continuously differentiable. By using Ito’s formula, we can obtain the stochastic
differential equation (SDE) for the interest rate process r(t):

(1.2) dr(t) = a(r(t), t)dt + b(r(t), t)dW (t),

where

a(r, t) = ζ′(η(r))(φ(t) − ψ(t)η(r)) +
1

2
σ(t)2ζ′′(η(r)), b(r, t) = σ(t)ζ′(η(r)).

Then we have the following fundamental partial differential equation (PDE) for the
rational price V (r, t) of an interest rate derivative at time t ([3][14]):

(1.3) Vt +
1

2
b(r, t)2Vrr + a(r, t)Vr − rV = 0.

Since ζ(x) is invertible, we can rewrite the above PDE into the PDE for Ṽ (x, t) =
V (ζ(x), t):

Ṽt +
1

2
σ(t)2Ṽxx + (φ(t) − ψ(t)x)Ṽx − ζ(x)Ṽ = 0.
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The assumption that ζ(x) is invertible is necessary to derive the equivalent SDE
(1.2) for r(t) and the PDE (1.3) . For example, when ζ(x) = x2, we have the well-
known quadratic model. Since ζ(x) = x2 is not invertible on (−∞,+∞), we do
not have an SDE for the interest rate process r(t) = X(t)2 and can not express the
interest rate derivative price as a function of interest rate r. It should be pointed
out that ζ(x) can be chosen to be any bounded invertible function from (−∞,+∞)
to (0, 1), e.g.,

(1.4) ζ(x) =
ex

1 + ex
.

For such a choice of ζ(x), the interest rates will not take unrealistic values more
than 1. We are referred to [8] and [9] for other possible choices of ζ(x) and the
calibration of one-factor models.

Now let us consider an American put option on a T ∗-maturity zero-coupon bond.
The option expiration date is T (< T ∗) and its exercise price is K. Since the option
can be exercised at any time up to its expiration date, there is a critical interest rate
r∗(t) which is referred to as the early exercise interest rate. Denote the option price
by p(r, t). Let x∗(t) = η(r∗(t)) and p̃(x, t) = p(ζ(x), t). According to the above
argument, we can show that p̃(x, t) and x∗(t) solve the following free boundary
problem:

p̃t +
1

2
σ(t)2p̃xx + (φ(t)− ψ(t)x)p̃x − ζ(x)p̃ = 0, −∞ < x < x∗(t), 0 ≤ t ≤ T,(1.5)

p̃(x∗(t), t) = g(x∗(t), t), 0 ≤ t ≤ T,(1.6)

p̃x(x
∗(t), t) = gx(x

∗(t), t), 0 ≤ t ≤ T,(1.7)

p̃(x, T ) = g(x, T ), −∞ < x <∞,(1.8)

where g(x, t) = max(K−P̃ (x, t;T ∗), 0) is the payoff of the put option and P̃ (x, t;T ∗)
is the bond price when r = ζ(x) at time t.

Front-fixing/front-tracking methods have been applied for numerical valuation
of American options. Their favorable feature is that the early exercise boundaries
and option prices can be computed simultaneously and with higher accuracy. We
are referred to [6, 11, 12, 13, 15, 16] for recent work in this aspect for American
stock options. For the usual front-fixing method, the Landau transformation y =
(x+L)/(x∗(t) +L) will be employed after restricting the problem on the bounded
domain (−L, x∗(t)) for a sufficiently large positive number L. Here we shall use
the linear transformation y = x+ L− x∗(t) while the problem is truncated on the
variable domain (x∗(t)−L, x∗(t)). The transformation will not affect the coefficient
of the leading term in the partial differential equation (1.5). This approach is first
proposed for American options on stocks in [2], and our numerical results show
that it produces much more accurate approximations of early exercise boundaries
and option prices. In this paper we shall consider such a front-fixing finite element
method (FFEM) for the free boundary problem (1.5)–(1.8).

The outline of the paper is as follows. In §2 we develop a FFEM for the free
boundary problem (1.5)–(1.8) and establish its stability with an appropriate as-
sumption. In §3 we give details for the implementation of our method and show
how to compute bond prices and their derivatives when analytic formulas are not
available. In §4 numerical results are presented to examine our method and to
compare it with the usual finite element method in [17]. In particular, we shall an-
alyze the behavior of early exercise interest rates near the option expiration dates
numerically. We conclude the paper with remarks in the last section, §5.


