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Abstract. Invariant solutions of two-dimensional elastodynamics in linear homoge-
neous isotropic materials are considered via the group theoretical method. The second
order partial differential equations of elastodynamics are reduced to ordinary differ-
ential equations under the infinitesimal operators. Three invariant solutions are con-
structed. Their graphical figures are presented and physical meanings are elucidated
in some cases.
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1 Introduction

Elastodynamics is one of the oldest topics in the theory of elasticity. It began almost
200 years ago when Navier announced the general equations of equilibrium and motion
of an isotropic elastic body in 1821. However, till today, known exact solutions of elas-
todynamics are still very limited. In [1, 2], Kausel and Kachanov collected some exact
solutions for classical and canonical problems in elastodynamics. The group theoretical
method is a very powerful and versatile tool to find invariant solutions of differential
equations, especially partial differential equations. It provides two basic ways: group
transformation of known solutions and construction of invariant solutions. Chand [3]
studied invariant solutions of one-dimensional wave propagation in dissipative materi-
als. For a one-dimensional system of wave propagation equations in linear, viscoelastic
and viscoplastic material, Ames and Suliciu constructed its invariant solutions in [4] and
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Ames obtained its group properties and conservation laws in [5]. Bokhari [6] studied
the invariant solutions of a nonlinear wave equation. It is clear that the group theoreti-
cal method is also very effective in solid mechanics. The above authors studied (1+1)-
dimensional problems in the space R1+1(x,t) by the group theoretical method. In this
paper, we consider invariant solutions of (2+1)-dimensional elastodynamics in linear
homogeneous isotropic materials in the space R2+1(x,y,t).

2 The governing equations for two-dimensional elastodynamics

Two-dimensional elastic body occupies the domain as a plane Ω. Displacement bound-
ary is denoted by ∂uΩ. ρ is the mass density of the elastic body. λ, µ are Lame’s coef-
ficients. In the Cartesian coordinate system (x1,x2), displacement vector is u= (u1,u2).
The theory of elastodynamics specializes in the case when all fields are time-dependent,
t is time variable. In homogeneous isotropic media, the linear theory of two-dimensional
elastodynamics without body force is the following equations in term of displacement
u=u(x1,x2,t)
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(2.1)

In order to facilitate the research invariant solutions of Eq. (2.1), we now non-
dimensionalize Eq. (2.1) with the characteristic length l,

x∗i =
xi

l
, (2.2)

where i, j=1,2. Substituting the dimensionless quantities into Eq. (2.1) and removing the
coordinate’s asterisks ∗, Eq. (2.1) are transformed to
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where
{

τ= t(λ+µ)
1
2 ρ−

1
2 /l,

β=µ/(λ+µ)=1−2ν.
(2.4)

In accordance with the strain energy is positive definite, we deduce the Poisson’s ratio
ν in the range from −1 to 1/2. Thus the range of β is (0,3). Generally ν should be


