NUMERICAL COMPUTATION OF THE FIRST EIGENVALUE OF THE p-LAPLACE OPERATOR ON THE UNIT SPHERE

A. EL SOUFI, M. JAZAR, AND H. AZARI

Abstract

In this paper, we discuss a numerical approximation of the first eigenvalue of the p-Laplace operator on the sphere $\left(S^{n}, g\right)$ of \mathbb{R}^{n+1}.

Key Words. First eigenvalue, p-Laplace operator, numerical approximation.

1. Introduction

The p-Laplace operator has been extensively studied in recent years, especially in the context of a bounded domain in $\mathbb{R}^{n}[12,7,6,11,5,13,2,1]$. Recently, there has been an increasing interest in the study of this operator - and in particular of its first eigenvalue - in the more general setting of Riemannian manifolds. The aim of this work is to provide numerical approximation of the first eigenvalue of the p-Laplace operator on the sphere $\left(S^{n}, g\right)$ of \mathbb{R}^{n+1}, g being the standard Riemannian metric of the sphere, namely the first positive number λ^{*} such that the following problem admits a non trivial solution in $W^{1, p}\left(S^{n}\right)$

$$
\begin{equation*}
\Delta_{p}^{g} u=\lambda^{*} u|u|^{p-2} \text { in } S^{n} \tag{1.1}
\end{equation*}
$$

where $p>1$. It is well known that λ^{*} is the minimizer of the associated energy

$$
\begin{equation*}
\lambda^{*}:=\min \left\{\int_{S^{n}}|\nabla f|^{p}, \quad f \in W^{1, p}\left(S^{n}\right),\|f\|_{L^{p}}=1, \int_{S^{n}}|f|^{p-2} f=0\right\} \tag{1.2}
\end{equation*}
$$

That is, λ^{*} is the best constant such that the following Poincare type inequality holds for any f such that $\int_{S^{n}}|f|^{p-2} f=0$:

$$
\int_{S^{n}}|\nabla f|^{p} \geq \lambda^{*} \int_{S^{n}}|f|^{p}
$$

By [10, Corollaire 3.1], we know that λ^{*} is also the first eigenvalue of the p Laplace operator on a semi-sphere with Dirichlet boundary condition

$$
\left\{\begin{array}{c}
\Delta_{p}^{g} u=\lambda^{*} u|u|^{p-2} \quad \text { in } \quad S_{+}^{n}, \tag{1.3}\\
u=0 \quad \text { on } \quad \partial S_{+}^{n}=S^{n-1}
\end{array}\right.
$$

where S_{+}^{n} is the upper semi-sphere.
We know the following
(1) $\lambda^{*} \geq\left[\frac{n-1}{p-1}\right]^{p / 2}$ for $p \geq 2$. [10, Theorem3.2]
(2) $\lambda^{*}=n$ in the case where $p=2$.
(3) The first eigenfunction u of (1.3) can be chosen to be nonnegative.
(4) u is radial: $u=\varphi(\rho)$ where ρ is the geodesic distance from the north pole S_{+}^{n}.
(5) u is a non increasing function of $\rho \in[0, \pi / 2], \varphi(\pi / 2)=0$ and $\varphi^{\prime}(0)=0$.

[^0]Of course, one can set the normalization $\varphi(0)=1$.
From the expression of the spherical Laplacian in polar coordinates, the constant λ^{*} appears as the unique positive number such that the following problem admits a solution

$$
\left\{\begin{array}{l}
\varphi_{*} \in C^{2}(0, \pi / 2) \tag{1.4}\\
{\left[-\varphi_{*}^{\prime}\right]^{p-2}\left[(p-1) \varphi_{*}^{\prime \prime}+(n-1) \frac{\cos \rho}{\sin \rho} \varphi_{*}^{\prime}\right]=-\lambda^{*} \varphi_{*}^{p-1}, \quad \rho \in(0, \pi / 2)} \\
\varphi_{*} \geq 0, \varphi_{*}(0)=1, \varphi_{*}^{\prime}(0)=0, \varphi_{*}(\pi / 2)=0
\end{array}\right.
$$

Behavior of the eigenfunction near $\frac{\pi}{2}$ Let's look to the behavior of the solution of (1.4) near $\frac{\pi}{2}$. First, note that if $p<2$ then $\varphi_{*}^{\prime}(\pi / 2)=0$ implies that $\varphi_{*}^{\prime \prime}(\pi / 2)=0$ also. Now, if $p>2$ then putting $t:=\frac{\pi}{2}-\rho$ and writing $\varphi_{*}(\rho)=\varphi_{*}\left(\frac{\pi}{2}-t\right)=a t^{\alpha}+O\left(t^{\alpha}\right)$, with $\alpha>1$, we get

$$
\left(a \alpha t^{\alpha-1}\right)^{p-2}\left[(p-1) a \alpha(\alpha-1) t^{\alpha-2}+(n-1) a \alpha t^{\alpha}\right]=-\lambda^{*}(\alpha t)^{p-1} .
$$

Then necessarily, one has $(\alpha-1)(p-2)+\alpha-2=p-1$, i.e. $\alpha=\frac{2 p-1}{p-1}>2$. In both cases, $p>2$ or $p<2$, we have

$$
\begin{equation*}
\varphi_{*}(\pi / 2)=\varphi_{*}^{\prime}(\pi / 2)=\varphi_{*}^{\prime \prime}(\pi / 2)=0 . \tag{1.5}
\end{equation*}
$$

2. Some monotony properties

By "first positive eigenvalue" problem it is classically meant: given a manifold \mathcal{M}, find a couple $(\lambda, \varphi), \lambda$ the least positive possible such that the problem

$$
\left\{\begin{align*}
\Delta_{p} \varphi & =\lambda \varphi|\varphi|^{p-2} \quad \text { in } \quad \mathcal{M} \tag{2.1}\\
\varphi & =0 \quad \text { on } \quad \partial \mathcal{M}
\end{align*}\right.
$$

Aiming to point out some monotony properties, we invert the order: given $\lambda>0$, find a couple (\mathcal{M}, φ) such that the associated problem admits a solution.

For our purpose, we limit ourselves to geodesic balls, i.e., $\mathcal{M}=B_{g}(N, \rho)$, where N is the north pole on the unit sphere and $\rho \in(0, \pi)$. The problem can then be formulated as follows: given $\lambda>0$, find $\left(\rho_{\lambda}, \varphi_{\lambda}\right)$ so that φ_{λ} is the unique solution, up to the multiplication by a constant, of the problem (2.1) on $B_{g}\left(N, \rho_{\lambda}\right)$. This gives directly the following

Proposition 2.1. For all $\lambda>0$ there exists a unique $\rho_{\lambda} \in(0, \pi)$ such that the problem (2.1) admits a unique solution φ_{λ} on $B_{g}\left(N, \rho_{\lambda}\right)$ satisfying $\varphi_{\lambda}(N)=1$. Moreover, the mapping $\lambda \longmapsto \rho_{\lambda}$ is continuous decreasing and $\lim _{\lambda \rightarrow 0} \rho_{\lambda}=\pi$ and $\lim _{\lambda \rightarrow \infty} \rho_{\lambda}=0$.

3. Approximate problem

Fix $\lambda>0, \rho_{\lambda} \in(0, \pi)$ and φ_{λ} solution of the following

$$
\left\{\begin{array}{l}
\varphi_{\lambda} \in C^{2}\left(0, \rho_{\lambda}\right), \tag{3.1}\\
{\left[-\varphi_{\lambda}^{\prime}\right]^{p-2}\left[(p-1) \varphi_{\lambda}^{\prime \prime}+(n-1) \frac{\cos \rho}{\sin \rho} \varphi_{\lambda}^{\prime}\right]=-\lambda \varphi_{\lambda}^{p-1}, \quad \rho \in\left(0, \rho_{\lambda}\right),} \\
\varphi_{\lambda} \geq 0, \quad \varphi_{\lambda}(0)=1, \quad \varphi_{\lambda}^{\prime}(0)=0, \quad \varphi_{\lambda}\left(\rho_{\lambda}\right)=0 .
\end{array}\right.
$$

In order to study Problem (3.1) we transform it into an initial condition problem. Since we have a problem at zero, using development into fractional Taylor series, one find that $\varphi(\rho)=1-a \rho^{2+\alpha}+O\left(\rho^{2+\alpha}\right)$, for ρ near zero, where

$$
\alpha:=\frac{2-p}{p-1} \quad \text { and } \quad a:=\frac{p-1}{p}[\lambda / n]^{\frac{1}{p-1}} .
$$

[^0]: Received by the editors March 30, 2010 and, in revised form, June 12, 2011.
 2000 Mathematics Subject Classification. Primary 58C40; Secondary 58J50, 65M32.

