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Abstract. In this paper, we develop and study numerical methods for the two-mode
shallow water equations recently proposed in [S. STECHMANN, A. MAJDA, and
B. KHOUIDER, Theor. Comput. Fluid Dynamics, 22 (2008), pp. 407–432]. Designing
a reliable numerical method for this system is a challenging task due to its conditional
hyperbolicity and the presence of nonconservative terms. We present several numer-
ical approaches—two operator splitting methods (based on either Roe-type upwind
or central-upwind scheme), a central-upwind scheme and a path-conservative central-
upwind scheme—and test their performance in a number of numerical experiments.
The obtained results demonstrate that a careful numerical treatment of nonconserva-
tive terms is crucial for designing a robust and highly accurate numerical method.
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1 Introduction

The goal of this paper is to develop an accurate, efficient and robust numerical method
for the two-mode shallow water equations (2MSWE):
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which can also be written in the following vector form:

Ut+FI(U)x=BI(U)Ux, (1.1)
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Here, u1(x,t),u2(x,t) and θ1(x,t),θ2(x,t) are the first two baroclinic modes of the vertical
expansions of the velocity and potential temperature, respectively.

The system (1.1) has been derived in [36] as a simplified model that describes nonlin-
ear dynamics of waves with different vertical profiles. Compared to the two-layer shal-
low water equations studied, for example, in [1,4–6,9,23,26,39], the 2MSWE have several
important differences and similarities, both physical and mathematical. The two-layer
shallow water equations describe flows with two layers of different densities that have
no horizontal variations within each layer, and thus no thermodynamic processes are in-
cluded in this model. In contrast, the 2MSWE include thermodynamic effects through the
potential temperatures θ1 and θ2. In addition, while the two-layer shallow water equa-
tions assume a free upper surface, the 2MSWE are based on a rigid upper lid approxi-
mation. Also, the vertical structure of the flow in the two-layer shallow water equations
consists of the barotropic and first baroclinic modes, while in the 2MSWE both the first
and second baroclinic modes are taken into account. From the mathematical point of
view, the two-layer shallow water equations and 2MSWE have a lot in common: Both are
systems of nonconservative PDEs, both conserve energy, both are conditionally hyper-
bolic only, and both have eigenstructures that are analytically intractable.

The presence of nonconservative terms BI(U)Ux in (1.1) makes both the theoretical
analysis and development of numerical methods for the system (I) a very difficult task.
In fact, when the solutions are discontinuous, which is a common feature of nonlinear hy-
perbolic systems, these nonconservative terms are not well defined in the distributional


