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Abstract. The evolution of precipitates in stressed solids is modeled by coupling a
quasi-steady diffusion equation and a linear elasticity equation with dynamic bound-
ary conditions. The governing equations are solved numerically using a boundary
integral method (BIM). A critical step in applying BIM is to develop fast algorithms to
reduce the arithmetic operation count of matrix-vector multiplications. In this paper,
we develop a fast adaptive treecode algorithm for the diffusion and elasticity problems
in two dimensions (2D). We present a novel source dividing strategy to parallelize the
treecode. Numerical results show that the speedup factor is nearly perfect up to a
moderate number of processors. This approach of parallelization can be readily imple-
mented in other treecodes using either uniform or non-uniform point distribution. We
demonstrate the effectiveness of the treecode by computing the long-time evolution of
a complicated microstructure in elastic media, which would be extremely difficult with
a direct summation method due to CPU time constraint. The treecode speeds up com-
putations dramatically while fulfilling the stringent precision requirement dictated by
the spectrally accurate BIM.
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1 Introduction

Crystal growth problem is of primary interest in different fields of science and technol-
ogy. One example is the production of binary alloys via solid-solid phase transforma-
tions. The second/precipitate phase emerges from the mother/matrix phase by lowering
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the temperature and it then grows by diffusion. The morphological evolution of these
precipitates raises keen interest in the materials science community, as these microstruc-
tures actually control the macroscopic behavior (e.g. mechanical strength) through their
interactions (e.g. elasticity) with the surrounding matrix phase.

Computational approaches to this problem include phase field methods and bound-
ary integral methods (BIM) among many others [5, 6, 18, 19, 24, 30, 32]. We will use a
boundary integral method to solve the field equations and to track the motion of the
interface between the matrix and the precipitate. The main advantage of the BIM is its
high accuracy, dimension reduction, and exact treatment of the boundary conditions.
Compared with phase field methods, it is not straightforward for BIM to handle phe-
nomena like precipitate merge or splitting. For the problem studied here, we assume
topology change does not occur. A review article on boundary integral methods in fluids
and materials can be found in [14]. In a boundary integral method, an iterative method
(e.g. GMRES) is often used to solve the dense and asymmetric linear systems for the
discretized integral equations. In GMRES, to compute the matrix-vector multiplication,
a direct summation method requires O(N2) operations, where N is the dimension of the
linear system or the number of computational points on the interface. The long time
computation is prohibitively expensive for precipitates with complicated morphology,
as a large N is necessary to resolve the interface. In practice, a fast summation method
is used to reduce the computation cost from O(N2) to O(N) or O(N logN). Examples
include the fast multipole method (FMM) [8, 12] and the treecode method [2, 21].

For our proposed problem, Akaiwa and Meiron studied the diffusional effects with-
out elasticity using FMM [1]. Thornton et al. [31] performed a computational study of an
anisotropic homogeneous problem. In their work, they used the fast multipole method to
evaluate the boundary integrals. Jou, Leo, and Lowengrub [15] investigated an isotropic
and inhomogeneous problem without fast summation methods. Note that the inhomo-
geneity requires solution of dipole strength to be used in the boundary integrals. In this
paper, we dramatically improve the original methods in [15] by incorporating a time
rescaling scheme [3, 20] and a parallel treecode algorithm. The detailed study of the
rescaling scheme for this problem has been published in [3]. Here, we focus on the devel-
opment of the treecode. In particular, we derive recurrence relations in Subsection 3.2 for
various kernels used in our integral equations. We also perform the error analysis associ-
ated with the treecode approximation. Moreover, using a novel source dividing strategy,
we develop an adaptive parallel treecode algorithm in Subsection 3.4. This approach
of parallelization can be readily implemented in other treecodes with either uniform or
non-uniform point distribution.

The fundamental idea of a treecode is a divide-and-conquer strategy. The Barnes-Hut
treecode divides the space evenly into four children in the two-dimensional space [2],
and then approximates a cluster of points by a single point at the cluster center with that
point carrying all the weights of points in the cluster. Later, this idea is implemented
for various kernels [9, 21]. When the size of a cluster is small compared to the distance
between a point and the cluster, the treecode approximates point-cluster interactions us-


