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Abstract. In the first of a series of papers, we will study a discontinuous Galerkin (DG)
framework for many electron quantum systems. The salient feature of this framework
is the flexibility of using hybrid physics-based local orbitals and accuracy-guaranteed
piecewise polynomial basis in representing the Hamiltonian of the many body sys-
tem. Such a flexibility is made possible by using the discontinuous Galerkin method
to approximate the Hamiltonian matrix elements with proper constructions of numer-
ical DG fluxes at the finite element interfaces. In this paper, we will apply the DG
method to the density matrix minimization formulation, a popular approach in the
density functional theory of many body Schrödinger equations. The density matrix
minimization is to find the minima of the total energy, expressed as a functional of the
density matrix ρ(r,r′), approximated by the proposed enriched basis, together with
two constraints of idempotency and electric neutrality. The idempotency will be han-
dled with the McWeeny’s purification while the neutrality is enforced by imposing the
number of electrons with a penalty method. A conjugate gradient method (a Polak-
Ribiere variant) is used to solve the minimization problem. Finally, the linear-scaling
algorithm and the advantage of using the local orbital enriched finite element basis in
the DG approximations are verified by studying examples of one dimensional lattice
model systems.
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1 Introduction

In the ab-inito quantum mechanical modelling of many electron system, the density-
functional theory together with pseudo-potential approximations has established itself
as the method of choice [20], especially through the implementation of Kohn-Sham wave
functions. Various numerical methods have been developed to solve the one-electron
nonlinear Schrödinger equation for the Kohn-Sham (K-S) wave functions, resulting in a
diagonalization of the Hamiltonian of the many electron system [8, 9]. Most of the nu-
merical methods are based on plane waves [20], due to the diagonal representation of the
kinetic operator, but at a large computational cost scaling as the cubic power of the size
of the system (number of atoms) and with a memory use as second power of the system
size. Therefore, for large systems it is imperative to develop numerical methods with a
linear scaling complexity both in computational time and memory. The development of
linear scaling method usually starts with a 1-D lattice system, where an empirical po-
tential representing those of the nuclear cores of the atoms is stipulated, on which the
performance of a numerical method will be tested first. This will be our objective in this
paper before we tackle the more difficult nonlinear density functional theory for many
electron systems. However, most of the key components of the algorithms will be appli-
cable to the latter case except for the treatment of nonlinearity and exchange-correlation
energy.

Linear scaling algorithms for many electron systems have seen much development
over last decades in the following areas [12]: Fermi operator expansion method [13],
Fermi operator projection method [11], the divide-and-conquer method [26], the density-
matrix minimization approach [16], the orbital minimization approach [21], and the op-
timal basis density-matrix minimization scheme [14]. Also, Galli and Parrinello [7] in-
troduced a plane-wave-based algorithm using localized nonorthogonal wave functions.
In the paper of Galli [6], it was pointed out that one of the important characteristics of
the O(N) methods is that the calculation of energy and forces do not require the calcu-
lation of the eigen energies/states of the effective single-atom Hamiltonian. There are
two popular ways of minimizing the total energy E: density matrix (DM) formulation
and localized function (LF) formulation [6]. Within both DM and LF formulations, two
basic concepts are introduced to go from an O(N3) method to an O(N) scaling method
for the minimization of E. Firstly, in the DM approaches, the idempotency constrain on
the density operator, i.e. ρ̂= ρ̂2, is not strictly enforced, and a weaker condition is used
instead when minimizing E. In addition, the constraint of N-electron equaling to the
trace of the density operator is observed. On the other hand, in the LF approaches the
orthonormality condition is not explicitly enforced. Weakening either the idempotency
or the orthonormality condition leads to the definition of an energy functional of particle
density n or wavefunction ψ, respectively, which is different from the energy functional
minimized in conventional approaches, but has the same absolute minimum. Secondly,
in the DM frameworks this energy functional is minimized with respect to spatially lo-
calized DMs; in the LF approaches, the functional is minimized with spatially localized


