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Abstract. A new approach to high-order accuracy for the numerical solution of conser-
vation laws introduced by Huynh and extended to simplexes by Wang and Gao is re-
named CPR (correction procedure or collocation penalty via reconstruction). The CPR
approach employs the differential form of the equation and accounts for the jumps
in flux values at the cell boundaries by a correction procedure. In addition to being
simple and economical, it unifies several existing methods including discontinuous
Galerkin, staggered grid, spectral volume, and spectral difference. To discretize the dif-
fusion terms, we use the BR2 (Bassi and Rebay), interior penalty, compact DG (CDG),
and I-continuous approaches. The first three of these approaches, originally derived
using the integral formulation, were recast here in the CPR framework, whereas the
I-continuous scheme, originally derived for a quadrilateral mesh, was extended to a
triangular mesh. Fourier stability and accuracy analyses for these schemes on quadri-
lateral and triangular meshes are carried out. Finally, results for the Navier-Stokes
equations are shown to compare the various schemes as well as to demonstrate the
capability of the CPR approach.
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1 Introduction

Second-order methods are currently popular in fluid flow simulations. For many impor-
tant problems such as computational aeroacoustics, vortex-dominant flows, and large
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eddy and direct numerical simulation of turbulent flows, the number of grid points re-
quired by a second-order scheme is often beyond the capacity of current computers. For
these problems, high-order methods hold the promise of accurate solutions with a man-
ageable number of grid points. Numerous high-order methods have been developed in
the last two decades. Here, we focus only on those that employ a polynomial to ap-
proximate the solution in each cell or element, and the polynomials collectively form a
function which is discontinuous across cell boundaries. Commonly used methods of this
type include discontinuous Galerkin (DG) [2, 3, 5–7], staggered-grid (SG) [15], spectral
volume (SV) [24–27], and spectral difference (SD) [17–19]. Among these, DG and SV are
usually formulated via the integral form of the equation, whereas SG and SD, the differ-
ential one. From an algorithm perspective, the difference among these methods lies in
the definition of the degrees of freedom (DOFs), which determine the polynomial in each
cell, and how these DOFs are updated.

High-order methods for conservation laws discussed above deal with the first deriva-
tive. Diffusion problems (viscous flows) involve the second derivative. There are many
ways to extend a method of estimating the first derivative to the second; Arnold et al.
analyzed several of them in [1]. Here, we restrict ourselves to approaches of compact
stencil: the second derivative estimate in an element involves data of only that element
and the immediate face neighbors. Such approaches have several advantages: the asso-
ciated boundary conditions are simpler, the coding is easier, and the implicit systems are
smaller. The four schemes of compact stencil employed are BR2 (Bassi and Rebay) [4],
compact DG or CDG [20], interior penalty [9,12], and I-continuous (the value and deriva-
tive are continuous across the interface) [14]. The BR2 scheme, an improvement of the
non-compact BR1 [2], is the first successful approach of this type for the Navier-Stokes
equations. The CDG scheme is a modification of the local DG or LDG [8] to obtain com-
pactness for an unstructured mesh. The interior penalty scheme is employed here with
a penalty coefficient using correction function [14]. The I-continuous approach is highly
accurate for linear problems on a quadrilateral mesh. Nicknamed ”poor man’s recov-
ery”, it can be considered as an approximation to the recovery approach of Van Leer and
Nomura [23]. (The recovery approach is beyond the scope of this paper since, although it
is more accurate than the schemes discussed here based on Fourier analysis [14], is more
complex and costly.)

For conservation laws, Huynh (2007) [13] introduced an approach to high-order ac-
curacy called flux reconstruction (FR). The approach solves the equations in differential
form. It evaluates the first derivative of a discontinuous piecewise polynomial func-
tion by employing the straightforward derivative estimate together with a correction
which accounts for the jumps at the interfaces. The FR framework unifies several ex-
isting methods: with appropriate correction terms, it recovers DG, SG, SV, SD methods.
This framework was extended to diffusion problems using quadrilateral meshes in [14],
where several existing schemes for diffusion were recast and analyzed. Wang and Gao
(2009) [28] extended the FR idea to 2D triangular and mixed meshes with the lifting col-
location penalty (LCP) formulation. The LCP method was applied to solve the Euler and


