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Abstract. Flexible discretization techniques for the approximative solution of coupled
wave propagation problems are investigated. In particular, the advantages of using
non-matching grids are presented, when one subregion has to be resolved by a sub-
stantially finer grid than the other subregion. We present the non-matching grid tech-
nique for the case of a mechanical-acoustic coupled as well as for acoustic-acoustic cou-
pled systems. For the first case, the problem formulation remains essentially the same
as for the matching situation, while for the acoustic-acoustic coupling, the formulation
is enhanced with Lagrange multipliers within the framework of Mortar Finite Element
Methods. The applications will clearly demonstrate the superiority of the Mortar Fi-
nite Element Method over the standard Finite Element Method both concerning the
flexibility for the mesh generation as well as the computational time.
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1 Introduction

In many engineering applications vibrations are responsible for the generation of acoustic
noise. Especially slender or thin-walled structures with a large surface exhibit such a
behavior. A modern way of controlling those vibrations is to attach piezoelectric patches
to membrane/plate like structures which can measure their deformations and by using
adequate power electronics act against the vibrations. These enhanced devices are so-
called smart materials.
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It is our goal to simulate such devices by applying the Finite Element Method (FEM).
The standard method does not offer enough flexibility to freely place the piezoelectric
actuators on the membrane/plate structures. We therefore resort to use the Mortar FEM.
In both structures we solve for the partial differential equation (PDE) describing the ef-
fects of linear elasticity. In the piezoelectric actuator the electric-mechanical coupling
has to be taken into account additionally. The continuity of the normal stresses between
the membrane/plate structure and the piezoelectric actuator is maintained by introduc-
ing a Lagrange multiplier. Now, the discretizations of both parts need not match on the
common surfaces any more and we are therefore allowed to freely place the piezoelec-
tric actuators on the membranes/plates. Therefore, we have to deal with the situation
of nonconforming grids appearing at the common interface of two subdomains. Special
care has to be taken in order to define and implement the appropriate discrete coupling
operators (see, e.g., [2, 4, 6, 11, 17]).

In this contribution we extend our research first published in [9] to full multiphysics
application including nonmatching mechanical-mechanical and mechanical-acoustic in-
terfaces. Therewith, we apply the method to practically relevant application, e.g., piezo-
electric patches attached to mechanical structures for active vibration as well as noise
control. In order to simulate the noise radiated from a vibrating structure we once again
apply nonmatching grids and extend the computational mesh for the plate by a mesh for
acoustic propagation. In this case however, no Lagrange multiplier is required since the
coupling takes place between two different physical quantities (mechanical displacement
and acoustic pressure).

The rest of this paper is organized in the following way. In Section 2 we introduce
the basic equations of linear piezoelectricity, the coupling scheme for mechanics on non-
matching grids, and the coupling between the mechanical field with the acoustic field. In
Section 3 we describe the application of our enhanced scheme for the numerical compu-
tation of a metal plate with attached piezoelectric patches. A summary and conclusions
are given at the end.

2 Governing equations and numerical scheme

2.1 Equations of linear piezoelectricity

The linearized material law describing the piezoelectric effect is given by [13]

σ=[cE]S−[e]tE, (2.1)

D=[e]S+[εS]E. (2.2)

Here σ is the tensor of mechanical stresses in Voigt notation, [cE] the linear stiffness tensor
at constant electric field, S denotes the tensor of mechanical strains (also in Voigt nota-
tion), [e] the tensor of piezoelectric coupling coefficients (�t denotes the transposed), E

the electric field vector, D the vector of the electric flux density and finally [εS] the tensor


