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Abstract. An all speed scheme for the Isentropic Euler equations is presented in this
paper. When the Mach number tends to zero, the compressible Euler equations con-
verge to their incompressible counterpart, in which the density becomes a constant. In-
creasing approximation errors and severe stability constraints are the main difficulty
in the low Mach regime. The key idea of our all speed scheme is the special semi-
implicit time discretization, in which the low Mach number stiff term is divided into
two parts, one being treated explicitly and the other one implicitly. Moreover, the flux
of the density equation is also treated implicitly and an elliptic type equation is derived
to obtain the density. In this way, the correct limit can be captured without request-
ing the mesh size and time step to be smaller than the Mach number. Compared with
previous semi-implicit methods [11,13,29], firstly, nonphysical oscillations can be sup-
pressed by choosing proper parameter, besides, only a linear elliptic equation needs to
be solved implicitly which reduces much computational cost. We develop this semi-
implicit time discretization in the framework of a first order Local Lax-Friedrichs (or
Rusanov) scheme and numerical tests are displayed to demonstrate its performances.
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1 Introduction

Singular limit problems in fluid mechanics have drawn great attentions in the past years,
like low-Mach number flows, magneto-hydrodynamics at small Mach and Alfven num-
bers and multiple-scale atmospheric flows. As mentioned in [17], the singular limit
regime induces severe stiffness and stability problems for standard computational tech-
niques. In this paper, we focus on the simplest Isentropic Euler equations and propose a

∗Corresponding author. Email addresses: degond@mip.ups-tlse.fr (P. Degond), tangmin1002@gmail.com
(M. Tang)

http://www.global-sci.com/ 1 c©2011 Global-Science Press



2 P. Degond and M. Tang / Commun. Comput. Phys., 10 (2011), pp. 1-31

numerical scheme that is uniformly applicable and efficient for all ranges of Mach num-
bers.

The problem under study is the Isentropic Euler equations
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where ρǫ,ρǫuǫ is the density and momentum of the fluid respectively and ǫ is the scaled
Mach number. This is one of the most studied nonlinear hyperbolic systems. For stan-
dard applications, the equation of state takes the form

p(ρ)=Λργ , (1.2)

where Λ,γ are constants depending on the physical problem.
It is rigorously proved by Klainerman and Majda [15, 16] that when ǫ→0, i.e., when

the fluid velocity is small compared with the speed of sound [3], the solution of (1.1)
converges to its incompressible counterpart. Formally, this can be obtained by inserting
the expansion

ρǫ =ρ0+ǫ2ρ(2)+··· , (1.3a)

uǫ =u0+ǫ2u(2)+··· , (1.3b)

into (1.1) and equate the same order of ǫ. The limit reads as follows [15, 18]:

ρ=ρ0, (1.4a)

∇·u0 =0, (1.4b)

∂tu0+∇
(

u0⊗u0

)

+∇p(2) =0. (1.4c)

Here p(2) is a scalar pressure which can be viewed as the Lagrange multiplier of the
incompressibility constraint. In view of the discussion of [17,18], p0 is the thermodynamic
pressure, which is uniform in the low Mach number limit, and p(2) is the hydrodynamic
pressure. Low Mach number flows are flows which are slow compared with the speed
of sound. In such a situation, pressure waves become very fast and, in the zero Mach
number limit, an instantaneous pressure equalization takes place [24, 25].

For atmosphere-ocean computing or fluid flows in engineering devices, when ǫ is
small in (1.1), standard numerical methods become unacceptably expensive. Indeed, (1.1)
has wave speeds of the form

λ=uǫ±
1

ǫ

√

p′(ρǫ),

where p′(ρǫ) is the derivative with respect to ρǫ. If a standard hyperbolic solver is used,
the CFL requirement is ∆t=O(ǫ∆x). Moreover in order to maintain stability, the numer-
ical dissipation required by the hyperbolic solver is proportional to |λ|. If |λ|=O(1/ǫ),


