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Abstract. We present a new Finite Volume Evolution Galerkin (FVEG) scheme for the
solution of the shallow water equations (SWE) with the bottom topography as a source
term. Our new scheme will be based on the FVEG methods presented in (Noelle and
Kraft, J. Comp. Phys., 221 (2007)), but adds the possibility to handle dry boundaries.
The most important aspect is to preserve the positivity of the water height. We present
a general approach to ensure this for arbitrary finite volume schemes. The main idea is
to limit the outgoing fluxes of a cell whenever they would create negative water height.
Physically, this corresponds to the absence of fluxes in the presence of vacuum. Well-
balancing is then re-established by splitting gravitational and gravity driven parts of
the flux. Moreover, a new entropy fix is introduced that improves the reproduction of
sonic rarefaction waves.
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1 Introduction

The shallow water equations (SWE) are a mathematical model for the movement of water
under the action of gravity. Mathematically spoken, they form a set of hyperbolic con-
servation laws, which can be extended by source terms like the influence of the bottom
topography, friction or wind forces. In this case, we will speak of a balance law. For
simplicity, this work will consider the variation of the bottom as the only source term.
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Many important properties of the model rely on the fact that the water height is
strictly positive. Despite this, typical relevant problems include the occurrence of dry
areas, like dam break problems or the run-up of waves at a coast, with tsunamis as the
most impressive example. So for simulations of these problems, we have to develop nu-
merical schemes that can handle the (possibly moving) shoreline in a stable and efficient
way. Another crucial point in solving balance laws is the treatment of the source terms.
For precise solutions, it is necessary to evaluate the source term in such a way that certain
steady states are kept numerically, i.e., the numerical flux and the numerical source term
cancel each other exactly for equilibrium solutions.

In the last years, many groups contributed to the solution of the difficulties described
above. In [2], Audusse et al. proposed a reconstruction procedure where the free surface
and water height are reconstructed and the bottom slopes are computed from these. This
guarantees the positivity of the water height and gives a well-balanced scheme at the
same time. Begnudelli and Sanders developed a scheme for triangular meshes including
scalar transports in [3]. They proposed a strategy how to exactly represent the free surface
in partially wetted cells, leading to improved results at the wetting/drying front. In [8],
Brufau et al. analyze how to deal with flow on an adverse slope. They locally modify the
bottom topography in certain situations to avoid unphysical run-ups or wave creation at
the dry boundary. Gallardo et al. discussed various solutions of the Riemann problem at
the front and used them in a modified Roe scheme. They then used the local hyperbolic
harmonic method from Marquina (cf. [24]) in the reconstruction step to achieve higher
order, see [9]. Kurganov and Petrova proposed a central-upwind scheme that is well-
balanced and positivity preserving in [13]. It is based on a continuous, piecewise linear
approximation of the bottom topography and performs the computation in terms of the
free surface instead of the relative water height to simplify the well-balancing. The last
feature is also a building block in the work of Liang and Marche [16]. They also provide
a method to extend this well-balancing feature to situations including wetting/drying
fronts. Liang and Borthwick [15] used adaptive quad-tree grids to improve the efficiency
of their schemes. Wetting and drying effects are handled as well as friction terms. In the
context of residual distribution methods, Ricchiuto and Bollermann developed a positiv-
ity preserving and well-balanced scheme for unstructured triangulations [26].

The finite volume evolution Galerkin (FVEG) methods developed by Lukáčová, Mor-
ton and Warnecke, cf. [18–20], have been successfully applied to the SWE in [19]. They
are based on the evaluation of so called evolution operators which predict values for the
finite volume update. Thanks to these operators, the schemes take into account all di-
rections of wave propagation, enabling them to precisely catch multidimensional effects
even on Cartesian grids. These schemes show a very good accuracy even on relatively
coarse meshes compared to other state of the art schemes and they are also competitive
in terms of efficiency (cf. [19]).

However, the existing FVEG schemes are not able to deal with dry boundaries. Thus
in this work we will present a method to preserve the positivity of the water height with
an arbitrary finite volume method. To achieve this, we reduce the outflow on draining


