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Abstract. A reconstruction-based discontinuous Galerkin method is presented for the
solution of the compressible Navier-Stokes equations on arbitrary grids. In this method,
an in-cell reconstruction is used to obtain a higher-order polynomial representation
of the underlying discontinuous Galerkin polynomial solution and an inter-cell re-
construction is used to obtain a continuous polynomial solution on the union of two
neighboring, interface-sharing cells. The in-cell reconstruction is designed to enhance
the accuracy of the discontinuous Galerkin method by increasing the order of the un-
derlying polynomial solution. The inter-cell reconstruction is devised to remove an
interface discontinuity of the solution and its derivatives and thus to provide a sim-
ple, accurate, consistent, and robust approximation to the viscous and heat fluxes
in the Navier-Stokes equations. A parallel strategy is also devised for the resulting
reconstruction discontinuous Galerkin method, which is based on domain partition-
ing and Single Program Multiple Data (SPMD) parallel programming model. The
RDG method is used to compute a variety of compressible flow problems on arbi-
trary meshes to demonstrate its accuracy, efficiency, robustness, and versatility. The
numerical results demonstrate that this RDG method is third-order accurate at a cost
slightly higher than its underlying second-order DG method, at the same time provid-
ing a better performance than the third order DG method, in terms of both computing
costs and storage requirements.
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1 Introduction

The discontinuous Galerkin methods [1–25] (DGM) have recently become popular for the
solution of systems of conservation laws. Nowadays, they are widely used in compu-
tational fluid dynamics, computational acoustics, and computational electromagnetics.
The discontinuous Galerkin methods combine two advantageous features commonly as-
sociated to finite element and finite volume methods. As in classical finite element meth-
ods, accuracy is obtained by means of high-order polynomial approximation within an
element rather than by wide stencils as in the case of finite volume methods. The physics
of wave propagation is, however, accounted for by solving the Riemann problems that
arise from the discontinuous representation of the solution at element interfaces. In this
respect, the methods are therefore similar to finite volume methods. The discontinuous
Galerkin methods have many attractive features: 1) They have several useful mathemati-
cal properties with respect to conservation, stability, and convergence; 2) The method can
be easily extended to higher-order (>2nd) approximation; 3) The methods are well suited
for complex geometries since they can be applied on unstructured grids. In addition,
the methods can also handle non-conforming elements, where the grids are allowed to
have hanging nodes; 4) The methods are highly parallelizable, as they are compact and
each element is independent. Since the elements are discontinuous, and the inter-element
communications are minimal, domain decomposition can be efficiently employed. The
compactness also allows for structured and simplified coding for the methods; 5) They
can easily handle adaptive strategies, since refining or coarsening a grid can be achieved
without considering the continuity restriction commonly associated with the conforming
elements. The methods allow easy implementation of hp-refinement, for example, the
order of accuracy, or shape, can vary from element to element; 6) They have the ability to
compute low Mach number flow problems without recourse to the time-preconditioning
techniques normally required for the finite volume methods. In contrast to the enormous
advances in the theoretical and numerical analysis of the DGM, the development of a
viable, attractive, competitive, and ultimately superior DG method over the more ma-
ture and well-established second order methods is relatively an untouched area. This is
mainly due to the fact that the DGM have a number of weaknesses that have yet to be
addressed, before they can be robustly used to flow problems of practical interest in a
complex configuration environment. In particular, there are three most challenging and
unresolved issues in the DGM: a) how to efficiently discretize diffusion terms required
for the Navier-Stokes equations, b) how to effectively control spurious oscillations in
the presence of strong discontinuities, and c) how to develop efficient time integration
schemes for time accurate and steady-state solutions. Indeed, compared to the finite ele-
ment methods and finite volume methods, the DG methods require solutions of systems
of equations with more unknowns for the same grids. Consequently, these methods have
been recognized as expensive in terms of both computational costs and storage require-
ments.

DG methods are indeed a natural choice for the solution of the hyperbolic equations,


