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Abstract. A new adaptive cell average spectral element method (SEM) is proposed
to solve the time-dependent Wigner equation for transport in quantum devices. The
proposed cell average SEM allows adaptive non-uniform meshes in phase spaces to
reduce the high-dimensional computational cost of Wigner functions while preserving
exactly the mass conservation for the numerical solutions. The key feature of the pro-
posed method is an analytical relation between the cell averages of the Wigner function
in the k-space (local electron density for finite range velocity) and the point values of
the distribution, resulting in fast transforms between the local electron density and lo-
cal fluxes of the discretized Wigner equation via the fast sine and cosine transforms.
Numerical results with the proposed method are provided to demonstrate its high ac-
curacy, conservation, convergence and a reduction of the cost using adaptive meshes.
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1 Introduction

Ever since its invention in 1932 by Wigner in [1], the Wigner equation has found appli-
cations in many physical fields, such as optics, information theory and statistical physics
and has constituted a new formulation of quantum mechanics [2,3]. The most appealing
characteristic of the Wigner equation is that it describes the evolution of quantum states
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in the same way as the Boltzmann equation does for classical systems. Both of them are
defined in a phase space and a physical interpretation can be given to terms appearing
in their dynamical equations. Although it is not a real probability distribution function
due to possible negative values as a result of the Heisenberg uncertainty principle, the
Wigner function serves the role of a distribution [4,5], for example, in calculating number
densities, current densities and etc. Using the Wigner equation to investigate quantum
transport has become more popular [6, 7] when the quantum behavior of semiconductor
devices can not be neglected as their size is down to nano-scales.

Frensley succeeded in simulating the quantum transport in a resonant tunneling diode
(RTD) by solving the Wigner equation with a first-order upwind scheme finite difference
method (FDM) [8, 9]. Since then, several second-order FDMs have been used [10] (for a
detailed summary about FDMs for the Wigner equation, please refer to [11, 12]). It has
been shown that general FDMs are not very accurate for transient Wigner simulations
and questions have been raised about the effect of the finite difference discretization of
inflow/outflow boundary conditions proposed by Frensley in [9]. Moreover, in order to
include the space charge effect, the Wigner equation should be coupled with a Poisson
equation [13, 14] and a self-consistent iteration is needed to solve the coupled system.
Application of such models with FDM solvers can be found in [15–17] where the time-
independent Wigner-Poisson system is considered. Recently, the Wigner function is ex-
tended to particle modeling accounting for various kinds of scatterings [18], where the
Boltzmann equation and the Wigner equation are coupled in a unified framework so that
simulation of actual quantum transport can be achieved by Monte Carlo methods [19,20].

In [21, 22] a spectral method based on plane waves is used to discretize the transient
Wigner equation in the k-space while FDMs are used in the x-space. In [23, 24] an opera-
tor splitting method is used to calculate the coupled Wigner-Poisson system. The reason
for using plane wave spectral methods is that the plane waves are the eigenfunctions of
the pseudo-differential operator associated with the Wigner potentials. However, there
are several issues in approximating the Wigner distributions in the k-space with peri-
odic plane waves. The periodization in the k-space produces a numerical solution which
resides in a different function space (periodic function) other than the original Wigner
function space L2(−∞,∞) and more importantly, creates an unphysical interaction of
the Wigner distribution with its periodic image frequencies in the k-space. Mathemati-
cally speaking, we need to handle carefully the infinite integral with respect to the dual
variable y appearing in the pseudo-differential operator ΘV [ f ] of (2.4). In [25, 26], af-

ter assuming that f̂ (x,y,t) defined in (2.5) has a compact support in the y-space with a
truncated domain in the y-space as [−1/(2∆k),1/(2∆k)], the authors showed that the
semi-discretized Wigner equation–finite difference discretization in the k-space in a uni-
form mesh–is well-posed and approaches the continuous problem when the mesh size
∆k goes to zero.

Our main objective in this paper is to reduce the cost of computing the Wigner distri-
bution in high-dimensional phase spaces. For this purpose, adaptive meshes will be our
approach which concentrates the computational resources in regions of localized electron


