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Abstract. In this paper we consider two commonly used classes of finite volume
weighted essentially non-oscillatory (WENO) schemes in two dimensional Cartesian
meshes. We compare them in terms of accuracy, performance for smooth and shocked
solutions, and efficiency in CPU timing. For linear systems both schemes are high
order accurate, however for nonlinear systems, analysis and numerical simulation re-
sults verify that one of them (Class A) is only second order accurate, while the other
(Class B) is high order accurate. The WENO scheme in Class A is easier to implement
and costs less than that in Class B. Numerical experiments indicate that the resolution
for shocked problems is often comparable for schemes in both classes for the same
building blocks and meshes, despite of the difference in their formal order of accuracy.
The results in this paper may give some guidance in the application of high order finite
volume schemes for simulating shocked flows.
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1 Introduction and the setup of the schemes

In this paper we are interested in numerically solving two dimensional conservation law
systems

ut+ f (u)x+g(u)y =0 (1.1)
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with suitable initial and boundary conditions, using the finite volume schemes on Carte-
sian meshes. For this purpose, the computational domain is decomposed to rectangular
cells

Ωij =[xi−1/2,xi+1/2]×[yj−1/2,yj+1/2],

and for simplicity we assume the mesh sizes ∆x= xi+1/2−xi−1/2 and ∆y=yj+1/2−yj−1/2

are constants. This assumption is not essential: finite volume schemes in this paper can
be defined on arbitrary Cartesian meshes, even those with abrupt changes in mesh sizes,
without affecting their conservation, accuracy and stability, in contrast to high order con-
servative finite difference schemes which can only be defined on smooth meshes. Finite
volume schemes are also easier to implement in an adaptive mesh environment, for ex-
ample in the AMR type schemes (e.g., [18]). This is the main reason that high order
finite volume schemes are still commonly used in practice, even though high order finite
difference schemes are much less expensive in multi-dimensions in uniform or smooth
Cartesian meshes, see for example [3] for a comparison of finite volume and finite differ-
ence schemes in the context of essentially non-oscillatory (ENO) reconstructions.

In a finite volume scheme we seek approximations to the cell averages
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We use the notation ū to denote the cell averaging operation in the x-direction (integral
in the cell [xi−1/2,xi+1/2] divided by the cell size ∆x), and ũ to denote the cell averaging
operation in the y-direction. The two dimensional cell average ¯̃u can be obtained by
successively performing the cell averaging operators in x and in y. If we integrate the
conservation law (1.1) over the cell Ωij and then divide by its area, we obtain
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where ¯̃ui,j is the cell average (1.2) and
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are the physical fluxes, which are cell averages of f (u) in y at x= xi+1/2 and of g(u) in x
at y= yj+1/2 respectively. Although (1.3) looks like a scheme, we should emphasize that
it is actually an equality satisfied by the exact solution of the PDE (1.1).

Notice that the equality (1.3) describes the evolution of the cell averages ¯̃ui,j while
requiring the information of point values of the solution u in evaluating the physical
fluxes in (1.4a) and (1.4b). In order to convert the equality (1.3) to a scheme (commonly


