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Abstract. The modified ghost fluid method (MGFM) has been shown to be robust and
efficient when being applied to multi-medium compressible flows. In this paper, we
rigorously analyze the optimal error estimation of the MGFM when it is applied to
the multi-fluid Riemann problem. By analyzing the properties of the MGFM and the
approximate Riemann problem solver (ARPS), we show that the interfacial status pro-
vided by the MGFM can achieve “third-order accuracy” in the sense of comparing to
the exact solution of the Riemann problem, regardless of the solution type. In addition,
our analysis further reveals that the ARPS based on a doubled shock structure in the
MGFM is suitable for almost any conditions for predicting the interfacial status, and
that the “natural” approach of “third-order accuracy” is practically less useful. Various
examples are presented to validate the conclusions made.
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1 Introduction

In recent years, with the continuous improvement of numerical simulation and the ma-
tureness of various algorithms, many complex flow issues, which were not able to be
explored in depth in the past, have reentered the horizons of scientific researchers. Some
high resolution schemes for compressible flows, such as the total variation diminishing
(TVD) schemes [1, 2] and the essentially non-oscillatory (ENO) schemes [3–5], can work
very successfully for pure medium compressible flows. However, when we employ such
schemes to simulate multi-medium compressible flows, unexpected difficulties occur due
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to nonphysical oscillations generated in the vicinities of the material interfaces. To sup-
press the oscillations, various techniques have been developed, see, e.g., [6–9, 11–16, 19].

Among the above mentioned methods, the ghost fluid method (GFM) [11] and other
GFM-based techniques [8, 9, 12, 19] provide simple and flexible ways for handling multi-
medium flows. The easy extension to multi-dimensions and maintenance of a sharp in-
terface are the advantages of the GFM-based techniques. The key point of these GFM-
based techniques is to properly define the properties of the ghost fluids, which is also the
primary difference among the various versions of the methods. The original GFM [11]
uses the local real fluid velocity and pressure to define the corresponding ghost fluid
status, and the density of the ghost fluid is obtained via isobaric fixing [10]. It has been
shown, however, that such a definition of ghost fluid status is not efficient when applied
to gas-water flows [12].

In fact, the pressure or the velocity across the material interface can have a sudden
jump when there is a strong wave interacting with the interface. Whether in the original
GFM or its later gas-water version [12], the definition of ghost fluid status is not strictly
sufficient to take into account the effects of wave interaction and material properties. To
overcome such shortcomings, a modified GFM (MGFM) was developed in [8], where a
Riemann problem was defined along the normal direction of the interface and solved
using approximate Riemann problem solver (ARPS) to predict the interfacial status. The
predicted interfacial status was then utilized to define the ghost fluid status. The MGFM
has been shown to be robust and less problem related and successfully applied to various
gas-gas, gas-water and fluid-structure coupling problems [8, 9, 20–22]. In addition, it has
been proved that the interfacial status captured by the MGFM approximates the exact
solution to “second-order accuracy” for the gas-gas Riemann problem [18].

However, we find that the above analytical conclusions are not optimal. In this paper,
a further analysis is carried out for the MGFM in the absence of vacuum or cavitation.
We shall show that the interfacial status captured by the MGFM can achieve “third-order
accuracy” in the sense of comparing to the exact solution for any multi-fluid Riemann
problem. Moreover, we shall find that the implicit ARPS based on a doubled shock struc-
ture is much stable and suitable for almost any initial conditions without restrictions
in predicting the interfacial status, while a “natural” approach, which is also a “third-
order” approximation, is proved to be less useful. It should be noted that the “accuracy”
discussed in this paper means how accurate the boundary conditions are implicitly im-
posed at the material interface and how accurate the interface states are approximated
by the GFM technique, which is in contrast with the accuracy of the numerical scheme or
the errors between the exact solution and the numerical solution.

The paper is organized as follows. In Section 2 we introduce the Euler equations
and equations of state (EOS) followed by a brief description of the level set equation.
In Section 3 the solution structure of a multi-fluid Riemann problem is presented. In this
section, the estimates about the interfacial status of the Riemann problem are derived and
discussed. These estimates will serve as the basis for accuracy analysis of the MGFM. In
Section 4, the multi-fluid Riemann problem is split into two pure fluid Riemann prob-


