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Abstract. We consider in this paper a high-order, semi-Lagrangian technique to treat
possibly degenerate advection-diffusion equations, which has been proposed in sim-
ilar forms by various authors. The scheme is based on a stochastic representation
formula for the solution, which allows to avoid the splitting between advective and
diffusive part of the evolution operator. A general theoretical analysis is carried out in
the paper, with a special emphasis on the possibility of using large Courant numbers,
and numerical tests in one and two space dimensions are presented.
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1 Introduction

This paper is devoted to a semi-Lagrangian type treatment of second order terms in
advection-dominated, possibly degenerate, parabolic equations. Although several ex-
tensions are possible, we will use the advection-diffusion equation,











vt(x,t)=
N

∑
i,j=1

aij
∂2

∂xi∂xj
v(x,t)+ f (x)·∇v(x,t)+g(x),

v(x,0)=v0(x),

(1.1)

(with x ∈RN , t∈ [0,T], v0 compactly supported in RN) as a model problem to describe
the technique and to carry out a general convergence analysis. Here, we assume that
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A = (aij) ∈ RN×N is a positive semidefinite matrix, thus including degenerate second-
order operators. In order to have more explicit results, we will possibly assume in the
sequel that the advection term is driven by a constant vectorfield:

f (x)≡







f1
...

fN






. (1.2)

The semi-Lagrangian (SL) schemes stem from the so-called Courant-Isaacson-Rees
scheme (see [5]), and at the moment they are very popular in the Numerical Weather
Prediction community. In this setting, they have been introduced by Wiin-Nielsen in [26]
and brought to the present form by Robert in the 80s (see [23] and the review paper [25]).
In a partly independent way, SL schemes have also been proposed in [4] and widely
applied to plasma physic problems since (see, e.g., [14, 24]).

The general idea of SL methods is to reconstruct the solution by integrating numer-
ically the equation along the characteristics starting from any grid point, not over the
whole time interval (as it would be the case in the particle method), but over a single
time step. The scheme is constructed by coupling a numerical method for ODEs (to com-
pute the upwind points with respect to the grid nodes) with an interpolation formula
(to recover the value of the solution in such points, which are not in general grid points
themselves). The comparison with more classical Eulerian difference schemes shows that
in general SL schemes have a higher computational cost per time step, but that they also
allow for larger time steps.

If A = 0 (i.e. in the case of pure advection), the schemes rely on the representation
formula

v(x,t)=
∫ t

0
g(y(s))ds+v0(y(t)), (1.3)

where y(t) is the solution of
{

ẏ(s)= f (y(s)),

y(0)= x.
(1.4)

Although using the representation formula (1.3) is very natural in the case of (linear)
first order equations, the situation gets more complex when a diffusion term appears.
In this situation, the usual response is to split the evolution operator and treat in semi-
Lagrangian way only the first order part. This results either in very severe time-step
bounds, or in the additional computational effort of solving an implicit scheme for the
second order term, with the further drawback that the splitting itself introduces a limita-
tion in the consistency rate of the scheme. A second approach is related to the so-called
Lagrange-Galerkin schemes (proposed independently in [7] and [22]) which however
cannot be exactly implemented in general (see [21]).

On the other hand, a natural extension of the technique used for pure advection equa-
tions can be provided by the stochastic representation (Feynman-Kac) formula for the


