
Commun. Comput. Phys.
doi: 10.4208/cicp.150609.031209a

Vol. 8, No. 3, pp. 642-662
September 2010

The Monotone Robin-Robin Domain Decomposition

Methods for the Elliptic Problems with

Stefan-Boltzmann Conditions

Wenbin Chen1,2,∗, Jin Cheng1, Masahiro Yamamoto3 and
Weili Zhang1

1 School of Mathematical Sciences and Key Laboratory of Computational Physics
(MOE), Fudan University, Shanghai, 200433, China.
2 Shanghai Key Laboratory of Intelligent Information Processing, Fudan University,
Shanghai, 200433, China.
3 Department of Mathematical Sciences, University of Tokyo, Tokyo, 153-8914, Japan.

Received 16 June 2009; Accepted (in revised version) 3 December 2009

Available online 15 April 2010

Abstract. This paper is concerned with the elliptic problems with nonlinear Stefan-
Boltzmann boundary condition. By combining with the monotone method, the Robin-
Robin domain decomposition methods are proposed to decouple the nonlinear inter-
face and boundary condition. The monotone properties are verified for both the mul-
tiplicative and the additive domain decomposition methods. The numerical results
confirm the theoretical analysis.
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1 Model problems

Let u be the solution of Laplace equation with nonlinear Stefan-Boltzmann boundary
condition arising from the steel-making industry:

−∆u=0 in Ω, (1.1)

∂u

∂n
=0 on ΓN , (1.2)

λ
∂u

∂n
=−σ(u4−u4

e ) on Γe, (1.3)

u=us on Γs, (1.4)
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Figure 1: Domain with composite heat-resistant materials and partial corroded domain.

where u represents the temperature of the heat-resistant materials, us >0 is the tempera-
ture of the melting-steel, ue>0 is the temperature of the exterior air , and the temperature
of the steel is higher than the temperature of the exterior air. Ω=

⋃

Ωi is the domain made
of composite heat-resistant materials, and the heat conduction coefficient of the material
λ may be different in the every subdomain Ωi. The Boltzmann thermal fourth power
law (1.3) is imposed on the exterior boundary surrounded by air, and σ is the Boltzmann
radiation coefficient. Let ui =u|Ωi

and λi =λ|Ωi
. Then
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∂u1

∂n1

∣

∣

∣
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+λ2
∂u2

∂n2

∣

∣

∣

Γ

=0 (1.5)

at the interface boundary Γ = Ω1∩Ω2 according to the heat transfer law, here n1 is the
outer unit normal vector from Ω1 to Ω2, and n2 from Ω2 to Ω1. Specially, another rela-
tionship

λ1
∂u1

∂n1
=−σ(u4

1−u4
2) (1.6)

is observed by the experiments which is different from the conventional condition u1|Γ =
u2|Γ. This condition (1.6) is explained as following: the interface Γ is an approximation
of very thin layer which is filled with air, and the Boltzmann thermal fourth power law
is applied to the heat transfer between the high temperature materials and air, and (1.6)
can be obtained by removing the variable of the air temperature.

In the steel-making procedure, the boundary Γ0 may be corroded after long-time high
temperature heat process [6, 7, 30], the detection of the corrosion is very important, and
stable and efficient solvers for the problem (1.1)-(1.6) are the base of any corrosion de-
tected algorithm.

Among the various techniques for the nonlinear partial differential equations, the
monotone method is one powerful tool to obtain the existence, uniqueness and other
properties of the solutions [5, 15, 19, 26]. Moreover, by using the technique of upper and
lower solutions, efficient algorithms can be constructed to solve the nonlinear equations,


