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Abstract. This work deals with the simulation of two-dimensional Lagrangian hydro-
dynamics problems. Our objective is the development of an artificial viscosity that is to
be used in conjunction with a staggered placement of variables: thermodynamics vari-
ables are centered within cells and position and fluid velocity at vertices. In [J. Com-
put. Phys., 228 (2009), 2391-2425], Maire develops a high-order cell-centered scheme
for solving the gas dynamics equations. The numerical results show the accuracy and
the robustness of the method, and the fact that very few Hourglass-type deformations
are present. Our objective is to establish the link between the scheme of Maire and the
introduction of artificial viscosity in a Lagrangian code based on a staggered grid. Our
idea is to add an extra degree of freedom to the numerical scheme, which is an ap-
proximation of the fluid velocity within cells. Doing that, we can locally come down to
a cell-centered approximation and define the Riemann problem associated to discrete
variable discontinuities in a very natural way. This results in a node-centered artificial
viscosity formulation. Numerical experiments show the robustness and the accuracy
of the method, which is very easy to implement.
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1 Introduction

In the context of multimaterial flows modeling, calculations are traditionally carried out
using Lagrangian numerical methods which are accurate and well tested for tracking ma-
terial properties. In this paper, we are interested in Lagrangian numerical based codes for
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the simulation of two dimensional hydrodynamics problems. A possible method to treat
these problems is to consider a staggered localization of variables: thermodynamics vari-
ables are centered within cells and position and fluid velocity are at vertices. This allows
the mesh to be trivially moved with the fluid velocity. Basic principles and difficulties
in the discretization of the equations of fluid dynamics written in Lagrangian form can
be found in [20]. More recently, Caramana et al. [4] showed how to construct compatible
hydrodynamics algorithms. The problem of the elimination of Hourglass-type motions
and artificial grid distortions is investigated in [21]. In the presence of solution discon-
tinuities, a special treatment is necessary to model shock waves. It is usual to introduce
an artificial viscosity term to smear out numerical shock profiles over a number of zones
to reduce post-shock oscillations. The pioneering method is due to Von Neumann and
Richtmyer and concerns one- dimensional flows [1]. They introduce an explicit artificial
viscosity term to smear a shock discontinuity in space without affecting the Hugoniot
conditions across the shock. The viscous stress is represented by a scalar pressure of the
form

q=−ρ|∆u|∆u.

This term is quadratic in ∆u, where ∆u is the velocity jump across the element. The work
done by the viscosity is identified with the thermodynamic irreversibility of the shock.
Von Neumann and Richtmyer are at the origin of all the progress that occurred on the
design of artificial viscosity afterwards. Landshoff notices in [15] that with a quadratic
viscosity formulation, small oscillations still occur after the shock. He proposes a linear
combination of a linear and a quadratic viscosities

q=C1ρ(∆u)2+C2aρ|∆u|,

where a is the local sound speed and C1 and C2 are non-dimensional constants. In [8],
Wilkins recalls that Kurapatenko has established another form of the viscosity term from
the pressure jump across a shock in an ideal gas. By considering the limit of Kurap-
atenko’s solution when the velocity jump tends to zero, a linear viscosity is obtained.
The formulation reduces to a quadratic term as ∆u becomes large. This provides a sup-
plementary justification of the formulation proposed by Landshoff [15].

The generalization of the method for multidimensional flows raises many difficulties.
The first one is concerned with the determination of the tensor character of the viscosity
due to the velocity gradient. Then, one has to choose an approximation of the shock di-
rection and a length scale. This last one has a non negligible effect on the computation
robustness when quadrilateral cells have very different sizes for adjacent edges (typi-
cally large aspect ratio), which occurs very frequently in Lagrangian simulations. The
simplest extension of the viscosity from one to two dimensions is to consider a viscosity
as a pressure term. We have to compute a velocity jump across the shock in the element.
Numerical results are strongly dependent on the approximation of the shock direction.
The work associated to the viscosity term is treated as a pressure (the viscosity has the
same effect in all the directions), which results in shock overheating. In [2], Schulz gen-
eralizes the scalar artificial viscosity into a tensor artificial viscosity in 2D. He develops a


