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Abstract. In the low-frequency fast multipole algorithm (LF-FMA) [19, 20], scalar ad-
dition theorem has been used to factorize the scalar Green’s function. Instead of this
traditional factorization of the scalar Green’s function by using scalar addition theo-
rem, we adopt the vector addition theorem for the factorization of the dyadic Green’s
function to realize memory savings. We are to validate this factorization and use
it to develop a low-frequency vector fast multipole algorithm (LF-VFMA) for low-
frequency problems. In the calculation of non-near neighbor interactions, the storage
of translators in the method is larger than that in the LF-FMA with scalar addition
theorem. Fortunately it is independent of the number of unknowns. Meanwhile, the
storage of radiation and receiving patterns is linearly dependent on the number of un-
knowns. Therefore it is worthwhile for large scale problems to reduce the storage of
this part. In this method, the storage of radiation and receiving patterns can be reduced
by 25 percent compared with the LF-FMA.
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1 Introduction

To meet real needs of society, more complex computational algorithms are needed to nu-
merically simulate and analyze more complex problems. As a popular way to perform
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complex computational algorithms, modern computational electromagnetics has made
great strides forward. However, since the finite power of computers limits the size of
problems which can be solved with computational algorithms, computational electro-
magnetics is confronted with the issue of CPU time usage and memory requirements.

Many numerical modelings of physical phenomena or systems often result in ma-
trix equations, in which matrices are dense. As direct inversion methods require O(N2)
memory and O(N3) central processing unit time, where N is the number of unknowns
for solving the problem, it is not suitable to solve large scale problems with direct inver-
sion methods. Hence, iterative solvers for matrix equations have been developed. The
bottleneck of iterative solvers is the matrix-vector product. Since, for traditional iterative
solvers, the memory and computational complexities of the matrix-vector product scale
as O(N2), it is still not efficient for solving large scale problems by using traditional itera-
tive solvers. In recent decades, fast-multipole-like algorithms [10,12,18,20,21] have been
developed to accelerate the matrix-vector product. Such matrix-vector product can be
performed in O(N) operations or O(N logN) operations per iteration depending on the
problem. Moreover, in these methods, the memory complexity is the same as the compu-
tational complexity. For example, the memory requirement and the number of floating
point operations per iteration of the low-frequency multilevel fast multipole algorithm
(LF-MLFMA) are both of O(N). Up to now, since many fast algorithms are quite mature
and CPU time and memory usage in fast multipole algorithms scale as

Time≈CtN logN, Memory≈CmN logN, (1.1)

it is meaningful for large problems to gain efficiency by reducing the constant Ct or Cm in
front of the scaling formulas.

Electromagnetic simulations in the low frequency regime are important issues, where
the objects or parts can be a tiny fraction of wavelength. Such simulations are often
encountered in analyzing electromagnetic phenomena in circuits and antennas. With
increasing complexity of circuits or antennas, it is necessary to improve the ability of fast
solvers for handling large-scale problems at low frequencies. For achieving this aim, one
way is to enhance the memory efficiency of fast solvers. To develop efficient fast solvers
for low-frequency large-scale problems, we start by studying the electric field integral
equation operator [27]

LE(J)= iωµ
∫

S
g(r,r′)J(r′)dr′− 1

iωǫ
∇
∫

S
g(r,r′)∇′ ·J(r′)dr′, (1.2)

where J(r) is the surface current on the surface S. The first term is due to the vector poten-
tial and it corresponds to the electric field generated by a time varying magnetic field. Its
order is O(ω). The second term is due to the scalar potential, corresponding to the elec-
tric field produced by the charge in the system. Its order is O(ω−1). When the frequency
ω→0, the contribution from the vector potential will be lost in the numerical simulation
due to finite machine precision. Then Eq. (1.2) will only have the scalar potential part.


