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Abstract. Adaptive moving mesh research usually focuses either on analytical deriva-
tions for prescribed solutions or on pragmatic solvers with challenging physical appli-
cations. In the latter case, the monitor functions that steer mesh adaptation are often
defined in an ad-hoc way. In this paper we generalize our previously used moni-
tor function to a balanced sum of any number of monitor components. This avoids
the trial-and-error parameter fine-tuning that is often used in monitor functions. The
key reason for the new balancing method is that the ratio between the maximum and
average value of a monitor component should ideally be equal for all components.
Vorticity as a monitor component is a good motivating example for this. Entropy also
turns out to be a very informative monitor component. We incorporate the monitor
function in an adaptive moving mesh higher-order finite volume solver with HLLC
fluxes, which is suitable for nonlinear hyperbolic systems of conservation laws. When
applied to compressible gas flow it produces very sharp results for shocks and other
discontinuities. Moreover, it captures small instabilities (Richtmyer-Meshkov, Kelvin-
Helmholtz). Thus showing the rich nature of the example problems and the effective-
ness of the new monitor balancing.
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1 Introduction

Adaptive mesh methods improve local resolution of numerical solvers and, as a result,
improve their performance. Results are significantly sharper than those obtained by us-
ing a uniform mesh with more mesh points. True gain in performance is only obtained,
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though, when the adaptive methods perform well automatically. This requires a balanced
monitoring of flow phenomena, without manual fine-tuning of parameters by trial and
error. This paper presents such a balanced monitoring, combined with a powerful finite
volume solver, applied to hydrodynamical problems.

Adaptivity Three types of adaptive methods are generally distinguished: h-, r- and
p-refinement. The h-refinement or local refinement splits mesh cells into smaller ones
based on some criterion. This can provide great levels of detail and is widely used in
CFD-codes. The implementation is nontrivial due to the hierarchical structure of the do-
main discretisation. The eventual number of mesh cells is sometimes hard to predict,
which may lead to unexpectedly long running times. Although the initial structure of
the mesh fixes the shape and orientation of the mesh cells, e.g., rectangular, the unlimited
amount of possible refinement makes these methods very powerful. In one of our exper-
iments (Section 5) we will make a comparison between our r-refinement results and the
h-refinement results produced by AMRVAC [23, 36].

The r-refinement or (adaptive) moving mesh refinement moves mesh points towards re-
gions that need refinement based on some criterion. The number of points remains con-
stant, which gives fairly predictable running times. Besides, the mesh cells can change
shape, position and orientation, so that alignment with, e.g., shocks or vortices is well
possible. For specific problems, the fixed number of mesh points may impose a limit on
the achievable resolution. This paper deals with r-refinement only and shows that it can
achieve great levels of detail. Tang [32] provides an extensive historical overview of mov-
ing mesh methods and their applications in CFD. Zegeling [43] presents Winslow-type
adaptivity applied to a wide range of problems. We also give a detailed and systematic
overview [35] on Winslow-type adaptivity, harmonic maps, geometric conservation laws
and more related methods.

The combination of the above two methods, called hr-refinement combines the ad-
vantages of both methods and is occasionally used, e.g., by Lang et al. [20] and Anderson
et al. [1].

The p- (and hp-) refinement is generally applied in different frameworks than what
we consider here. It involves the local increase of polynomial order of the basis functions
in finite element methods.

Moving mesh research We employ a variational formulation of mesh adaptation, an
approach which has become well-known over the past five decades. A short historic
overview of moving mesh methods is given in Section 3.3.1. Tang and Tang [30] pre-
sented a moving mesh algorithm in a pragmatic combination with a finite volume solver.
Over the past five years, this inspired several others. The technique is usually applied to
hydrodynamics (HD), e.g., by Tang [31] and Zegeling et al [44], and to magnetohydro-
dynamics (MHD), e.g., by Han and Tang [13], Tan [27], Van Dam and Zegeling [39] and
Zegeling [42]. Moving mesh methods generally have little dependency on the physical
PDEs under consideration, as diverse applications show, e.g., the Navier-Stokes equa-
tions by Di et al. [11] and the Hamilton-Jacobi equations by Tang et al. [29]. A similar


