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Abstract. This paper presents a systematic method to derive Beam Propagation Mod-
els for optical waveguides. The technique is based on the use of the symbolic calculus
rules for pseudodifferential operators. The cases of straight and bent optical waveg-
uides are successively considered.
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1 Introduction

Complex optical waveguides play a key role in the design of optical communications
systems and integrated optical circuits [13]. In many applications, the waveguides con-
sidered are not uniform in the propagating direction, called the z-direction in this paper
(inhomogeneous structures, bent waveguides e.g.). In order to simulate numerically such
optical devices, one can truncate the structure in the transverse x-variable by using for
example a Perfectly Matched Layer (see, e.g., [11]). Since the length of the waveguide
(of the order of the millimeter) is much larger than the free space wavelength λ0 (of
the order of the micrometer), a numerical simulation remains extremely costly. This is
the reason why approximate efficient models like Beam Propagation Methods (BPMs)
have been introduced [13]. The idea is to solve a propagation equation in the z-direction
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(which in some sense is considered as a time variable) with an initial condition at z = 0
fixed by the incident wave field. Then, all the difficulty is to built accurate BPMs for
complex situations. Let us remark that similar problems and techniques arise in other
applications (geophysics [4], acoustics [5, 8] e.g.). A widely used approach is based on a
rough approximation of the Helmholtz equation resulting in the so-called Standard BPM
which is a Schrödinger-type equation (also called Fresnel equation or Standard Parabolic
Equation in electromagnetics [12]). However, increased accuracy is generally required
for these models. To this aim, high-order BPMs have been formally proposed in the lit-
erature (see Section 2 and references herein). These models have also been numerically
validated in [10] for straight waveguides, showing their importance for practical applica-
tions. Finally, bent waveguides can formally also be considered. A direction to improve
the corresponding BPM is proposed in [14] but remains limited to first-order approxima-
tions. The aim of this paper is twofold: 1) we show how these models, which are often
obtained formally, can be constructed systematically via the symbolic calculus of pseu-
dodifferential operators for straight waveguides with variable refraction index, 2) we
extend the formalism to derive high-order BPM models for arbitrary bent waveguides
following similar techniques.

The outline of the paper is the following. After recalling the high-order BPMs met in
the literature in Section 2, we begin by analyzing in detail the case of a straight waveguide
with a smooth (z,x)-variable index. We propose a procedure for recovering these models
and to possibly improve them in Section 3. In Section 4, we provide the extension to bent
waveguides which are commonly used in applications [3,15,16]. This shows in particular
the influence of the geometry in the BPM model through e.g. the curvature. This strategy
provides the possibility of proposing new BPM models for the full Maxwell’s equations
using similar techniques for systems [1]. This is an important open problem as noticed
in the recent review paper by Lu [13]: ”The improved one-way models are also available
for the TM case. Unfortunately, they are not available for full-vectorial cases”. Finally,
Section 5 draws a conclusion.

2 TM energy conserving one-way equations

Let us begin by introducing the Transverse Magnetic (TM) [13] governing equation for
planar waveguides
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where z denotes the propagation direction, k0 is the reference wavenumber in vacuum
and n(x,z) is the refractive index. The time dependence is assumed to be e−iωt, setting
ω as the angular frequency. An incident wave is specified at z = 0. The Beam Propaga-
tion Method (BPM) approximately solves (2.1) by computing the solution of a one-way
Helmholtz equation. Some specific difficulties arise for the TM polarization problem. In


