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Abstract. A fluid mixture model of tissue deformations has been studied in this pa-
per. The model is a mixed system of nonlinear hyperbolic and elliptic partial differen-
tial equations. Both theoretical linear stability and numerical analysis are presented.
Comparisons between standard numerical methods that utilize Runge-Kutta methods
coupled with the WENO scheme and the immersed interface methods are given. Nu-
merical examples are also presented.
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1 Introduction

In this paper, we consider a mathematical model developed in [3,8,9] for modeling defor-
mations of contractile mesenchymal tissues. The tissues are considered to be composed
of two inter-penetrating material phases: an aqueous phase and a cell-fiber phase. The
aqueous phase is composed of all the water and dissolved extracellular components of
the tissues. The cell-fiber phase consists of the cells and the remaining, generally fibrous,
extracellular components. It is assumed that: (1) the two phases occupy complementary
portions of the space, (2) the aqueous phase behaves as a Stokes fluid, (3) the stresses in
the cell-fiber phase are dissipated by permanent deformation on the relevant time scale
and can also be treated as a Stokes flow. These assumptions lead to the following system
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of partial differential equations (in 1D):
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where 0< θ <1 is the volume fraction of cells and fibers, v is the velocity of the cell-fiber
phase, p is the pressure, ϕ is the drag coefficient, ψ is the contractility coefficient, σ is the
swelling coefficient, and M is the viscosity coefficient of the cell-fiber fraction. Note that
the parameters ϕ, M, ψ and σ are nonnegative and can depend on time, space, and θ.

A reasonable range of dimensional and non-dimensional parameters are presented in
Table 1; see [3, 8] for the references.

Table 1: Expected ranges of parameter values in which ǫ is a small positive number.

parameter symbol units range

specific drag ϕ kg/m3-sec 1012∼1014

coefficient

tissue viscosity M kg/m-sec 105

specific contractility ψ kg/m-sec2 103∼104

coefficient

swelling number σ kg/m-sec2 10∼103

volume fraction of θ0 - ǫ∼ (1−ǫ)
cell-fiber phase

The boundary conditions (BC) are given as follows

v(0,t)=v(L,t)=0,
∂θ

∂x
(0,t)=
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(L,t)=0,

∂p
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(0,t)=

∂p

∂x
(L,t)=0. (1.4)

One way to model two adjacent tissues is to simply include them in the same equations
and account for their different densities with θ. Thus a simple interaction between two
tissues can be modeled with piecewise constant initial condition (see Fig. 1),

θ(x,0)=

{

θl , if 0≤ x< x1 or x2 < x≤ L,

θu, if x1≤ x≤ x2,
(1.5)

where we use θl for the smaller constant (lower), and θu for the larger constant (upper).
In this paper, we will focus on simulating tissue deformations numerically for the

one dimensional model. Note that the mathematical model is a non-linear, mixed (hy-
perbolic and elliptic) system of differential equations. Shock waves will be developed in


