p-Multigrid Method for Fekete-Gauss Spectral Element Approximations of Elliptic Problems

Richard Pasquetti* and Francesca Rapetti
Laboratoire J.A. Dieudonné, UMR 6621 CNRS, Université de Nice Sophia-Antipolis, Parc Valrose, 06108 Nice cedex 02, France.

Received 28 September 2007; Accepted (in revised version) 8 January 2008
Available online 1 August 2008

Abstract

An efficient p-multigrid method is developed to solve the algebraic systems which result from the approximation of elliptic problems with the so-called FeketeGauss Spectral Element Method, which makes use of the Fekete points of the triangle as interpolation points and of the Gauss points as quadrature points. A multigrid strategy is defined by comparison of different prolongation/restriction operators and coarse grid algebraic systems. The efficiency and robustness of the approach, with respect to the type of boundary condition and to the structured/unstructured nature of the mesh, are highlighted through numerical examples.

AMS subject classifications: 65N30, 65N35, 65N55
Key words: Spectral elements, Fekete points, multigrid methods.

1 Introduction

The Spectral Element Method (SEM), developed in the 80's to solve with spectral-like methods Partial Differential Equations (PDE) in non-Cartesian (non-cylindrical, nonspherical, \cdots) geometries, has proved to be very successful during the two last decades, see, e.g., [8, 16]. Its main drawback is however to be not really adapted to very complex geometries, due to the non-simplicial shape of the elements which are the image of the cube $\hat{\Omega}=(-1,1)^{d}$, where d is the space dimension, in which the polynomial approximation holds.

Some ways have been suggested to support triangular/tetrahedral elements and hence simplicial meshes. Among them is the one proposed in [16], which makes use of the "collapsed coordinate system" resulting from a singular mapping from the

[^0]2D/3D cube onto the triangle/tetrahedron. This approach has appeared of great interest, but suffers from a non-symmetric distribution of the interpolation points in the triangle/tetrahedron, with an useless accumulation of these points in one of the vertices.

The SEM being a nodal method, i.e., the basis functions are Lagrange polynomials based on interpolation points, the main research axis was then to provide points in the simplex showing nice interpolation properties, i.e., such that the Lebesgue constant does not increase fastly with the degree of the polynomial approximation, see, e.g., $[4,5,13,14]$. Here we are interested in Fekete points based methods, as proposed for the triangle in [27], due to their nice interpolation properties and strong link with the Gauss-Lobatto Legendre (GLL) nodes of the quadrangle based SEM, say QSEM, since Fekete points and GLL points coincide in the d-dimensional cube [2].

In contrast to the GLL points, the Fekete points are however not Gauss points, so results obtained with the earlier triangle based SEM, say TSEM, proposed in [28] may be disappointing. High-accuracy quadrature rules are indeed needed to preserve the "spectral accuracy" of SEM type methods, which are based on variational formulations. This has motivated new researches, to find a unique set of points with nice interpolation and quadrature properties $[29,30]$ or at least to develop more sophisticated quadrature rules [31]. Such researches are not yet satisfactory. Thus, the quadrature rule of [31] is costly and requires a linear mapping from the reference triangle T to the spectral element; if the mapping is non-linear, then a quadrature rule specific to each element must be set up [15]. For us we have proposed to consider the Gauss points of the triangle as quadrature points and the Fekete points as interpolation points, in the frame of a "FeketeGauss TSEM" [20].

Once the approximation procedure is fixed it remains to develop efficient solvers for the associated algebraic systems. As well known, the matrices resulting from high order approximations are indeed ill-conditioned, with $\mathcal{O}\left(N^{4}\right)$ condition numbers in 2D, where $N \equiv p$ is the total degree of the polynomial approximation in each spectral element. We thus have focused on domain decomposition techniques, each spectral element being considered as a subdomain. The following methods have been considered:

- Neumann-Neumann Schur complement methods [21]: Addressing the Schur complement with Neumann-Neumann type preconditioners has yielded promising results. Moreover, the condition number of the Schur complement only shows a $\mathcal{O}(N)$ behavior.
- Overlapping Schwarz methods [22]: Impressive results can be obtained but with the drawback that, in contrast to the QSEM, a "generous overlap" (overlap of one entire mesh element) must be used due to the non-tensorial distribution of the Fekete points in the element.
In parallel, it was of interest to revisit the p-multigrid approach, which makes use of a fixed simplicial mesh and of different approximation levels, each of them associated with a different polynomial degree. For the QSEM this was initially suggested in [18, 23,24] and recently used in conjunction with Overlapping Schwarz preconditioners for

[^0]: ${ }^{*}$ Corresponding author. Email addresses: richard.pasquetti@unice.fr (R. Pasquetti), francesca.rapetti @unice.fr (F. Rapetti)

